Association Mapping of Frost Tolerance QTL in Barley

Tondelli A1, Pagani D1, Rizza F1, Stanca AM1, Moragues M2, Comadran J3, Thomas B3, Waugh R3, Russell J3, Flavell A2, Cattivelli L1

1 CRA - Genomic Research Centre, via San Protaso 302, 29017 Fiorenzuola d’Arda, Italy; a.tondelli@libero.it
2 University of Dundee at SICI, Invergowrie, DD2 5DA Dundee, UK
3 Scottish Crop Research Institute, Invergowrie, DD2 5DA Dundee, UK

BACKGROUND
Barley (Hordeum vulgare) is an excellent model system to unravel the genetic bases of frost tolerance, because of the large variation for this trait within the primary gene pool and an ever-expanding set of tools for genome analysis. Within the ERA-PG funded project ExBarDiv (Genomics-assisted analysis and exploitation of barley diversity) three different populations - namely cultivar, landrace and wild (Hordeum spontaneum) germplasm collections - have been assembled in order to test the efficiency of an incremental association mapping approach for identifying new useful gene alleles.

PLANT MATERIAL - PHENOTYPING
Here we report the evaluation of frost tolerance in 230 spring barley cultivars deriving from across Europe. For each accession, 8 first-leaf stage plants have been cold acclimated for 4 weeks (3°C, 8 h light and 2°C, 16 h dark), then exposed to a freezing stress at a temperature of -12°C. To evaluate the effect of freezing on the functionality of the Photosystem II (PSII) reaction centers, the Fv/Fm physiological parameter has been measured using a Pulse Amplitude-Modulated fluorometer (Rizza et al. 2001, Plant Breeding 120:389–396), after the stress treatment and after a 24 h recovery time. The distribution of the recorded Fv/Fm values is reported in Figure 1.

PLANT MATERIAL – GENOTYPING
The same germplasm collection has been genotyped with 1536 gene-based SNPs using the Illumina Oligo Pool Arrays marker technology. In order to determine the underlying population structure, Principal Coordinates Analysis has been carried out on a similarity matrix created from 967 SNP marker with Minor Allele Frequency (MAF) >0.10 using a simple matching coefficient. A clear division within the spring barley germplasm due to row number has been observed (Fig. 2). Patterns of Linkage Disequilibrium along barley chromosomes have been evaluated as well, and an example (chromosome 5H) is given in figure 3.

PHENOTYPE/GENOTYPE ASSOCIATION
Association analyses have been carried out by Restricted Maximum Likelihood, fitting a mixed model that included the similarity matrix as covariance term for the random effect, in order to account for the population structure. As shown in Figure 4, the method successfully identified the major genes determining barley ear-row number, namely int-c on chromosome 4H, vrs1 on chromosome 2H and vrs3 on chromosome 1H. Regarding barley frost tolerance, significant marker/trait associations have been detected on chromosome 4H and 5H (Fig. 5). These QTL, although preliminary, do not co-localize with loci previously related to barley frost tolerance (e.g. Fr-H1 and Fr-H2), and could represent new resistance genes. Sinteny with sequenced genomes such as rice and Brachypodium will be exploited to find gene candidates in the regions of interest.

Figure 1. Distribution of the Fv/Fm values measured on 230 spring barley cultivars, after freezing at -12°C.

Figure 2. PCO Analysis of 230 spring barley cultivars.

Figure 3. Plots of r² measurements as a function of genetic distance between loci pairs (up) and LD map (down) of barley chromosome 5H.

Figure 4. Major loci controlling barley row-number, as identified by association analysis.

Figure 5. Whole genome association scan for frost tolerance.