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A B S T R A C T

Robust projections of climate impact on crop growth and productivity by crop models are key to designing
effective adaptations to cope with future climate risk. However, current crop models diverge strongly in their
climate impact projections. Previous studies tried to compare or improve crop models regarding the impact of
one single climate variable. However, this approach is insufficient, considering that crop growth and yield are
affected by the interactive impacts of multiple climate change factors and multiple interrelated biophysical
processes. Here, a new comprehensive analysis was conducted to look holistically at the reasons why crop
models diverge substantially in climate impact projections and to investigate which biophysical processes and
knowledge gaps are key factors affecting this uncertainty and should be given the highest priorities for im-
provement. First, eight barley models and eight climate projections for the 2050s were applied to investigate the
uncertainty from crop model structure in climate impact projections for barley growth and yield at two sites:
Jokioinen, Finland (Boreal) and Lleida, Spain (Mediterranean). Sensitivity analyses were then conducted on the
responses of major crop processes to major climatic variables including temperature, precipitation, irradiation,
and CO2, as well as their interactions, for each of the eight crop models. The results showed that the temperature
and CO2 relationships in the models were the major sources of the large discrepancies among the models in
climate impact projections. In particular, the impacts of increases in temperature and CO2 on leaf area devel-
opment were identified as the major causes for the large uncertainty in simulating changes in evapotranspira-
tion, above-ground biomass, and grain yield. Our findings highlight that advancements in understanding the
basic processes and thresholds by which climate warming and CO2 increases will affect leaf area development,
crop evapotranspiration, photosynthesis, and grain formation in contrasting environments are needed for
modeling their impacts.
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1. Introduction

Impacts of climate change on future crop productivity and food
security have been of key concern because agricultural production risks
may increase, and food security be threatened, by climate change and
increasing extreme climate events (Lobell et al., 2011; Olesen et al.,
2011; Porter et al., 2014;Rötter et al., 2018 ). Crop models are popular
tools to project climate change impacts on future agricultural produc-
tion, driven by climate projections from global climate models (GCMs)
(White et al., 2011; Porter et al., 2014). However, the projections of
climate change impacts are plagued with uncertainties from many
sources, such as climate projections, crop model parameters, and crop
model structure (Tao et al., 2009, 2018; Rötter et al., 2011;Rötter,
2014; Asseng et al., 2013, 2015; Wallach et al., 2017; Wallach and
Thorburn, 2017). These uncertainties have to be quantified and reduced
as much as possible in order to better assess climate risk and inform
effective adaptation (Tao et al., 2018). Recently, some studies have
consistently indicated that the uncertainty from crop model structure is
larger than those from climate projections and crop model parameters
(Asseng et al., 2013, 2015; Bassu et al., 2014; Li et al., 2015;
Zhang et al., 2017; Tao et al., 2018). Therefore, the most effective way
to improve climate change impact projections is to reduce the un-
certainty from crop model structure through model comparison and
improvement, combined with considerations of other sources of un-
certainty such as model parameters (Wang et al., 2017; Challinor et al.,
2018; Tao et al., 2018; Rötter et al., 2018). Major international efforts,
such as the Modelling European Agriculture with Climate Change for
Food Security (MACSUR) project (Ewert et al., 2015) and the Agri-
cultural Model Inter-comparison and Improvement Project (AgMIP)
(Rosenzweig et al., 2013; Ruane et al., 2017), have tried to compare
and improve crop models, and quantify, manage or reduce uncertainty
from model structure in projecting climate impact on crop productivity
(e.g. Palosuo et al., 2011; Rötter et al., 2012; Asseng et al., 2013, 2015;
Bassu et al., 2014; Li et al., 2015; Martre et al., 2015; Pirttioja et al.,
2015; Durand et al., 2018; Maiorano et al., 2017; Hasegawa et al.,
2017; Müller et al., 2017; Wang et al., 2017; Tao et al., 2018).

Previous studies tried to compare or improve crop models mainly by
simulating the impact of one single climate variable, such as tempera-
ture (Zhang and Tao, 2013; Asseng et al., 2013, 2015; Maiorano et al.,
2017; Wang et al., 2017) or rising atmospheric CO2 concentration
(Durand et al., 2018; Hasegawa et al., 2017) on crop development,
growth, water use, and grain formation. These studies documented that
although individual crop models were able to simulate observed grain
yields fairly well, yield projection in response to climate warming or
elevated CO2 varied significantly among the crop models because of
quite different temperature or CO2 relationships applied in the models
(Asseng et al., 2013, 2015; Zhang and Tao, 2013; Durand et al., 2018;
Wang et al., 2017; Hasegawa et al., 2017). These studies are important
in understanding the uncertainty and for improving models regarding
the impact of a specific climate variable. However, final grain yields are
subject to the interactive impacts of multiple climate change factors and
many interrelated biophysical processes, such as crop phenological
development, leaf area development, evapotranspiration (ET), photo-
synthesis, and grain formation (Porter and Gawith, 1999). The impacts
of different climate variables on multiple biophysical processes and
consequently on final grain yields can be offset or additive
(Swann et al., 2016; Tao et al., 2017). A comprehensive analysis that
accounts for the interactive impacts of multiple climate variables and
their interactions, as well as for the multiple biophysical processes and
their interactions, is necessary in order to understand, in a holistic way,
why climate impact projections by different crop models are so dif-
ferent. Furthermore, since most of the biophysical processes in crop
development, growth, water use, and grain formation are directly or
indirectly affected by temperature and CO2 relationships in crop
models, it is necessary to identify, in more detail, which biophysical
processes and knowledge gaps are the key sources or bottlenecks for the

uncertainty in climate impact projections and therefore should be given
the highest priorities for improvement.

As an outgrowth of our previous study (Tao et al., 2018), here we
first applied eight barley models and eight climate projections for the
2050s to quantify the uncertainty from crop model structure in climate
impact projections for barley growth and yield at two sites with con-
trasting climate: Jokioinen, Finland in the Boreal climatic zone and
Lleida, Spain in the Mediterranean climatic zone. The climate projec-
tions, the impact projections from each single model, as well as the
uncertainties in impact projections, provide the rationale, target, and
basis for the following analyses. We then conducted sensitivity analyses
for each of the eight crop models based on their responses to major
climatic variables including temperature, precipitation, irradiation, and
CO2, as well as their interactions. Finally, we conducted a compre-
hensive analysis to investigate why crop models diverge substantially in
climate impact projections. Differently from previous model inter-
comparison studies (Asseng et al., 2013, 2015; Bassu et al., 2014;
Li et al., 2015; Castañeda et al., 2015; Hasegawa et al., 2017) and
impact response surface studies (Pirttioja et al., 2015), we aimed here,
for the first time, to gain insights into the reasons underlying the di-
vergence in climate impact projections in a holistic way.

2. Materials and methods

2.1. Study sites

Two study sites with contrasting climates were selected for this
study. They represent the North and South of current agro-climatic
conditions for barley cultivation areas in Europe. The general in-
formation on the geographical location, climate, and barley cultivation
is presented in Table 1.

2.2. Crop models and data

Eight different barley models with varying complexity were applied:
APSIM 7.7 (AP, Holzworth et al., 2014), CropSyst 4.15.04 (CS,
Stöckle et al., 2014), HERMES 4.26 (HE, Kersebaum, 2007), MCWLA
2.0 (MC, Tao et al., 2009), MONICA 1.2.5 (MO, Nendel et al., 2011),
SIMPLACE<Lintul2, Slim> (SI, Angulo et al., 2013), SiriusQuality 2.0
(SQ, Martre et al., 2006), and WOFOST 7.1 (WO, Boogaard et al., 1998).
The eight can be used as good examples to investigate the divergences
among crop models because they are process-based and widely used for
climate impact sudies, have quite different model structures (Tables S1-
S9), and produce quite different climate impact projections (Tao et al.,
2018). The use of eight different models is sound for this purpose, al-
though the use of more different models could be better. All the models
simulate crop phenological development, growth, and productivity on a
daily time step. Different approaches are applied in simulating major
processes in these models, as detailed in Tables S1-S9.

Briefly, for crop phenological development, most of the models
account for the effects of temperature, day length, and vernalization
except SI andWO, which do not account for vernalisation and may have
uncertainty in simulating the development rate of cultivars needing
vernalisation. AP, CS, HE, and MO also account for the effects of water
or nutrient stress on crop phenological development. SQ accounts for
the impact of water deficit on phenological development through its
effect on canopy temperature. For leaf area development, a carbon
(biomass)-dependent approach is used in most of the models, exceptMC
and SQ, which use a temperature- and water/nitrogen-driven approach.
For light utilization, a light-use-efficiency (LUE) approach is applied in
most of the models except HE, MC, MO, and WO, which use a gross
photosynthesis minus respiration approach. In CS, a transpiration effi-
ciency biomass growth approach was also used. For ET, a Penman or
Penman-Monteith approach is used in most of the models based on the
‘big-leaf’ approach. A dry matter partitioning approach is used during
reproductive stages in most of the models to simulate yield formation,
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except for CS and MC, which use a harvest index approach. The LUE,
transpiration efficiency, or both are modified by CO2 concentration
using empirical functions in most of the models, except HE, MC, and
MO, which use the Farquhar model, and WO, which uses a photo-
synthesis-light response curve.

Detailed field trial data, including soil properties, tillage, fertiliza-
tion, phenology, above-ground biomass at anthesis and maturity, yield,
and agronomic management practices were obtained for two growing
seasons at Jokioinen in 2002 and 2009 (Salo et al., 2016) and for three
growing seasons at Lleida from 1996 to 1999 (Cantero-Martinez et al.,
2003). The barley cultivars in the experiments were Annabell at Jo-
kioinen and Hispanic at Lleida. The spring barley cultivar at Jokioinen
didn't need vernalisation although the winter barley cultivar at Lleida
did. The soils were Vertic Cambisol with a clay texture at Jokioinen and
typic Xerofluvent with a loam texture at Lleida. Barley cultivation was
rain-fed at both sites. Based on the experimental data on barley phe-
nology and yield, agronomic management practices, and environmental
conditions at Jokioinen and Lleida, for each crop model, the genetic
parameters were calibrated and validated using the traditional trial-
and-error method. This was done based on one year's trial data and then
validated against the remaining experimental data. At each site, for
each model, with its calibrated parameters, the differences between
simulated and observed flowering and maturity dates were less than 5
days, and the discrepancies between observed and simulated yield were
less than 20% (Tao et al., 2018).

Observed daily weather data for solar radiation, minimum (Tmin)
and maximum (Tmax) temperature, precipitation, wind speed and air
humidity during the period 1980–2010 at the two sites were obtained
from the Finnish Meteorological Institute, the Spanish Agencia Estatal
de Meteorología (AEMET), and other sources (Pirttioja et al., 2015). For
future climate, eight contrasting GCMs were selected from the Coupled
Model Inter-comparison Project Phase 5 (CMIP5) ensemble, driven by
the emission scenario of Representative Concentration Pathway (RCP)
8.5 for the period of the 2050s, a reference for possible futures with
high greenhouse gas emissions. The RCP8.5 scenario was chosen be-
cause very recent publications have shown that actual emissions con-
tinue to be close to the high end of the projections. Currentlym the high
end RCP8.5 appears to be the ``business-as-usual'' case; there are no
signs that this will change in the near future (e.g., Smith and
Myers, 2018).

The eight GCMs were selected based on their climatic sensitivity to
preserve the range of uncertainties in CMIP5 (Tao et al., 2018), in-
cluding ACCESS1-3 (ACCESS, Rashid et al., 2013), EC-EARTH
(Hazeleger et al., 2012), GFDL-CM3 (GFDL, Dunne et al., 2013), GISS-
E2-R-CC (GISS, Nazarenko et al., 2015), HadGEM2-ES (HADGEM,
Jones et al., 2011), IPSL-CM5A-MR (IPSL, Dufresne et al., 2013),
MIROC-ESM (MIROC, Watanabe et al., 2011), and MPI-ESM-MR (MPI,
Raddatz et al., 2007). The number of GCMs used is a rough compromise
between perfectness and computing cost. For crop model simulations,
daily local-scale scenarios of 31 years for the 2050s were constructed
for the two study sites and each of the eight GCMs by applying change
factors to observed weather data for the period 1980–2010, as de-
scribed in detail in Tao et al. (2018). Based on the eight climate pro-
jections for the 2050s at Jokioinen, Tmin and Tmax during the growing
season were projected to increase by 1.5 °C to 4.1 ºC and 1.5 °C to
4.2 ºC, respectively, relative to 1981–2010 (Fig. S1a). Precipitation was
projected to change by −2% to +13% and solar radiation by −2% to
+12%. At Lleida, Tmin and Tmax were projected to increase by 1.3 °C
to 2.6 ºC and 1.3 °C to 3.6 ºC, respectively. Precipitation was projected
to change by −27% to +15% and solar radiation by −1% to +10%
(Fig. S1b).

2.3. Climate change impact projections for the 2050s

Each of the eight calibrated barley models were run for 30 growing
seasons with annual re-initialisation using the baseline (1980–2010)Ta
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weather data and each of the eight climate projections for the 2050s,
respectively. Atmospheric CO2 concentration was set at 360 ppm for the
baseline and 560 ppm for the 2050s according to the emission scenario
RCP 8.5. The typical sowing date, agronomic management, and culti-
vars from the field trials used for model calibration were applied. Then
for each of the eight barley models and each of the eight climate pro-
jections for the 2050s, we computed the projected changes in barley
maturity date, maximum leaf area index (LAImax), ET, above-ground
biomass, and yield in the 2050s relative to 1981–2010, based on the
yearly changes between the corresponding 30-year simulations in the
two time periods.

2.4. Model sensitivity analysis to multiple climate variables and their
interactions

In order to investigate the reasons underlying the discrepancies in
climate change impact projections by different crop models, the sensi-
tivity of crop growth and yield to changes in temperature, precipitation,
solar radiation, CO2, and their interactions for each of the eight crop
models was analyzed, respectively. Considering the projected climate
changes at the two sites in the 2050s (Fig.S1), based on the daily
weather data for 1980–2010, the sensitivity of crop growth and yield to
changes in temperature, precipitation, solar radiation, and CO2 was
investigated with daily maximum and minimum temperature changed
from −3 to +7 ºC by steps of 1 °C; with daily precipitation changed by
−20%, −10%, −5%, 5%, 10%, and 20%; with daily solar radiation
changed by −15%, −10%, −5%, 5%, 10%, and 15%; and with either
360, 450, 560, 640, or 720 ppm CO2, respectively. The above sensitivity
analysis methods have been commonly used (e.g., Asseng et al., 2013;
Bassu et al., 2014; Li et al., 2015) and are acceptable for the purpose of
this study. The sensitivity of crop growth and yield to the joint changes
in temperature, precipitation, solar radiation, and CO2 was investigated
with the eight simulation settings in Table 2.

The interaction effects of the eight simulation settings (IMi) pre-
scribed in Table 2 were estimated as:

= − −

− −

× × ×IM S S S

S S ,

i i Temperature Precipitation Radiation CO i Temperature i Precipitation

i Radiation i CO

( ) ( ) ( )

( ) ( )

2

2

where, Si (Temperature×Precipitation×Radiation×CO2) is the simulated effects
on maturity date, LAImax, ET, above-ground biomass, or yield with the
simulation setting i in Table 2 accounting for the joint changes in all the
four climate variables. Si (Temperature), Si (Precipitation), Si (Radiation), and Si
(CO2) are the simulated main effects on maturity date, LAImax, ET,
above-ground biomass, or yield accounting for the change in a single
climate variable, i.e. temperature, precipitation, solar radiation, and
CO2, respectively, prescribed in the simulation setting i in Table 2. The
IMi includes the interaction effects from all the two-way, three-way and
four-way interactions among the four climate variables.

2.5. Model inter-comparisons and analyses

For each of the eight crop models, we first computed the simulated
changes in barley maturity date, LAImax, ET, above-ground biomass,
and yield based on the 30-year simulations for each setting of the
sensitivity analyses, relative to the 30-year simulations for the baseline

(1981–2010). Then we compared the differences and calculated the
standard deviations of crop growth and yield responses to changes in
temperature, precipitation, solar radiation, CO2, and their interactions
among the eight crop models based on 30-year mean in order to in-
vestigate the variability among the models. Finally, we investigated the
reasons underlying the differences in climate impact projections by
different crop models. Pearson correlation analysis was conducted
among maturity date, LAImax, ET, above-ground biomass, and yield to
understand which processes were important in determining the change
in final grain yield for each crop model. The significance of correlations
was tested using the two-tailed method. In addition, we also collected
the controlled environment experiment data in the literature for
benchmarking the models.

3. Results

3.1. Projected climate change impacts on barley development, growth, and
yield in the 2050s

In the 2050s, under the eight climate projections, the barley ma-
turity date was projected to advance at both Jokioinen and Lleida,
however, by different magnitudes among the eight models and climate
projections (Fig. 1a, b). In particular, MO projected the largest ad-
vancement in maturity date at Jokioinen, and AP projected the least
advancement at Lleida, among the eight crop models. The projected
changes in LAImax diverged substantially among the eight crop models
and climate projections at both Jokioinen and Lleida (Fig. 1c, d). A
large decrease in LAImax was projected by CS, MO, and SI at Jokioinen,
and by CS and SI at Lleida. In contrast, a large increase in LAImax was
projected by MC at Jokioinen, and by AP and MC at Lleida (Fig. 1c, d).
ET was projected to decrease generally, however, by different magni-
tudes among the eight crop models and climate projections at both
Jokioinen and Lleida, except for SI and WO at Jokioinen (Fig. 1e, f). As
a result, the projected changes in above-ground biomass and grain yield
diverged greatly at both Jokioinen and Lleida (Fig. 1g, h, i, j). Grain
yield and above-ground biomass were projected to greatly decrease by
CS, MO, SI, andWO, but increase slightly forMC and SQ at Jokioinen; at
Lleida, they were projected to strongly decrease for CS and SI, while
strongly increase for MC and HE (Fig. 1g, h, i, j).

The standard deviations of the projected changes in crop growth
period, LAImax, ET, biomass, and yield showed that the crop models
have the largest uncertainty in simulating climate change impacts on
crop yield, biomass, and LAImax at Lleida across the eight crop models
and the eight climate projections (Fig. 1k). At Jokioinen, crop models
have the largest uncertainty in simulating crop LAImax (Fig. 1k). Across
the eight climate projections, the projected yield changes were most
variable for HE, WO, and MO at Lleida, and the projected LAImax
changes were most variable for CS, MO, and AP (Fig. 1l). For each in-
dividual crop model, the projected changes in LAImax, above-ground
biomass, and grain yield were consistent. Correlation analyses showed
that the projected yield changes were significantly and positively cor-
related with the projected changes in above-ground biomass, ET, ma-
turity date, and LAImax for most of the models, but not all of them
(Tables S12-S19). For example, at Jokioinen, the projected yield
changes were not significantly and positively correlated with changes in
maturity date for SQ and in LAImax for HE. At Lleida, the projected

Table 2
Settings for sensitivity analysis of crop growth and yield to joint changes in temperature, precipitation, solar radiation, and CO2, relative to 1981–2010.

Variable Simulation settings
I II III IV V VI VII VIII

Change in daily Tmax and Tmin (°C) +2 +2 +4 +4 +2 +2 +4 +4
Change in daily precipitation (%) −10 +10 −20 +20 −10 +10 −20 +20
Change in daily solar radiation (%) +10 +10 +10 +10 +10 +10 +10 +10
Change in CO2 (ppm) +90 +90 +90 +90 +200 +200 +200 +200
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changes in grain yield were not significantly and positively correlated
with changes in maturity date for AP, CS, MO, SQ, and SI, in ET for CS
and SQ, and in LAImax for AP, MO, HE, and SQ (Tables S12-S19).

3.2. Responses of crop growth and yield to CO2

The barley maturity date was generally not affected by rising CO2

for any of the models except MO at Jokioinen (Fig. 2a, b). Simulated
changes in LAImax with rising CO2 greatly diverged among the eight

crop models, ranging on average from 1.2% (for SQ) to 52.6% (for MO)
at Jokioinen, and from 0.0% (for SQ) to 101.3% (for SI) at Lleida with
720 ppm CO2 relative to 360 ppm CO2 (Fig. 2c, d). ET was projected to
decrease with rising CO2 by most of the crop models except SI, which
didn't account for impact of CO2 on ET (Fig. 2e, f). The simulated im-
pacts of rising CO2 on above-ground biomass and grain yield strongly
diverged among the models too, ranging from 16.0% (10.7%) to 76.1%
(78.9%) for above-ground biomass (grain yield) at Jokioinen and from
24.1% (22.3%) to 105.0% (104.4%) at Lleida with 720 ppm CO2

Fig. 1. Projected changes in the barley maturity date (a, b), LAImax (c, d), ET (e, f), biomass (g, h), and yield (i, j) at Jokioinen, Finland (a, c, e, g, i) and Lleida, Spain
(b, d, f, h, j) under eight climate projections for 2050s by eight crop models, relative to 1981–2010. The standard deviations of the projected changes in the crop
growth period (PD), LAImax, ET, biomass, and yield at Jokioinen (JO) and Lleida (LL) across the eight crop models for each of the eight climate projections (k), as
well as across the eight climate projections for each of the eight crop models (i), are also presented. The error bars represent the standard deviations of estimates
based on the 30 years simulation results.
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relative to 360 ppm CO2 (Fig. 2g, h, i, j). The standard deviation of the
projected changes across the eight crop models showed that crop
models had the largest uncertainty in simulating the impacts of elevated
CO2 on LAImax at Lleida, and on yield, biomass, and LAImax at Jo-
kioinen (Fig. 3a). Compared with the Free-Air Carbon dioxide Enrich-
ment (FACE) experiment data in the literature (Table S10), the simu-
lated impacts of elevated CO2 on LAImax, ET, biomass and yield might
be beyond the observation ranges of available FACE experiments for
some models such as SI (Fig. 2). For each individual model, changes in
grain yield were significantly and positively correlated with changes in
above-ground biomass and LAImax, and changes in above-ground
biomass were significantly and positively correlated with changes in
LAImax (Tables S12-S19).

3.3. Responses of crop growth and yield to temperature change

Barley maturity date, and consequently growth duration, was sen-
sitive to temperature change. For all the models, maturity date was
delayed with a decreased temperature and advanced with an increased
temperature, but to different extents (Fig. 4a, b). ET during the growing
period generally increased with decreasing temperature and decreased
with increasing temperature, again with the models showing differing
sensitivities (Fig. 4e, f). There were also large uncertainties in the re-
sponses of LAImax, biomass, and grain yield to temperature change
among models. Changes in LAImax (Fig. 4c, d), biomass (Fig. 4g, h),
and grain yield (Fig. 4i, j) with temperature change among the eight
models diverged largely in terms of magnitude or even sign, particu-
larly at Lleida. Six of the eight models use a biomass-dependent

Fig. 1. (continued)
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approach to model LAI. For these models, LAI dynamics and LAImax
changed with crop above-ground biomass and, as a result, LAImax and
grain yield decreased with increasing temperature and increased with
decreasing temperature. In contrast, MC and SQ used a temperature-
and water-driven approach to simulate LAI. For MC, LAImax increased
slightly with increasing temperature at Jokioinen and more greatly at
Lleida, resulting in the above-ground biomass and grain yield de-
creasing at Jokioinen and increasing at Lleida (Fig. 4). For SQ, LAImax
decreased with increasing temperature at Jokioinen and increased
slightly at Lleida, giving decreased above-ground biomass and grain
yield at both sites (Fig. 4). MO and SI were most sensitive to tem-
perature change at Jokioinen, and CS, SI, andMC were most sensitive at

Lleida.
The standard deviation of the projected impacts of temperature

change across the eight crop models showed that the models had the
largest uncertainty in simulating temperature impacts on LAImax at
both Lleida and Jokioinen, with the uncertainty increased substantially
with temperature rising or falling (Fig. 3b). Compared with field-
warming experiment data in the literature (Table S11), the simulated
impacts of temperature increase on LAImax, biomass, and yield might
be beyond the observation ranges of available field warming experi-
ments for some models (Fig. 4). For each individual model, the re-
sponses of LAImax, biomass, and yield to temperature change were
consistent at Jokioinen for most of the models (Fig. 4). Correlation

Fig. 2. Responses of the barley maturity date (a, b), LAI (c, d), ET (e, f), biomass (g, h) and yield (i, j) to rising CO2 at Jokioinen, Finland (a, c, e, g, i) and Lleida, Spain
(b, d, f, h, j) in the eight crop models. The ranges of elevated CO2 impacts at 500 to 600 ppm based on the FACE experiments reported in literature (Table S2) are
marked between the panels. The error bars represent the standard deviations of estimates based on the 30 years simulation results.
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analyses showed that at Jokioinen for all the models grain yield re-
sponses to temperature change were significantly and positively cor-
related with changes in above-ground biomass, LAImax, maturity date,
and ET. At Lleida, grain yield changes were significantly and positively
correlated with changes in above-ground biomass for most of the
models, in LAImax for AP, CS, MC, SI, and SQ, in maturity date for SI
and SQ, and in ET for AP, SI, SQ, and WO (Tables S12-S19).

3.4. Responses of crop growth and yield to precipitation change

At the both sites, barley maturity date was not sensitive to pre-
cipitation change except for MO at Jokioinen (Fig. S2a, b). LAImax, ET,
above-ground biomass, and grain yield decreased generally with de-
creasing precipitation and increased with increasing precipitation,
however with different sensitivities among the eight models (Fig. S2).
LAImax (Fig. S2c, d), ET (Fig. S2e, f), above-ground biomass (Fig. S2g,
h), and grain yield (Fig. S2i, j) were not sensitive to precipitation
change for SI, SQ, andWO at Jokioinen, and for AP, SI, and SQ at Lleida.
In contrast, they were sensitive for MO and CS at Jokioinen, and for
MO, CS, and MC at Lleida.

The standard deviation of the projected impacts of precipitation
change across the eight crop models showed that crop models had the
largest uncertainties in simulating impacts of precipitation change on
yield, biomass, and LAImax at Jokioinen, with the uncertainty growing
with decreasing or increasing precipitation (Fig. 3c). Nevertheless, the
standard deviation was much less than that for the projected impacts of
temperature increases. For each individual model, the responses of
LAImax, ET, above-ground biomass, and grain yield to precipitation
change were consistent. Correlation analyses showed that grain yield
changes were significantly and positively correlated with changes in
above-ground biomass, LAImax, and ET for the eight models, and in

maturity date for CS and HE at Jokioinen. At Lleida, grain yield changes
were significantly and positively correlated with changes in above-
ground biomass and ET for the eight models, in LAImax for all the
models except AP and WO, and in maturity date for CS and HE (Tables
S12-S19).

3.5. Responses of crop growth and yield to solar radiation change

Maturity date, and consequently growth duration, was not sensitive
to solar radiation change for all the models except MO and SQ at
Jokioinen (Fig. S3a, b). For most of the models, LAImax (Fig. S3c, d), ET
(Fig. S3e, f), and above-ground biomass (Fig. S3g, h) decreased with
decreasing solar radiation and increased with increasing solar radia-
tion, although with quite different amplitudes among the models. In
contrast, the reverse responses were found for LAImax and above-
ground biomass for CS and MC at Jokioinen and for MC at Lleida,
mainly due to solar radiation-induced increases in ET (Fig. S3e, f) and
subsequently drought stress on LAI development and photosynthesis
rate, which mitigated the positive impact of solar radiation increase on
photosynthesis rate. LAImax was most sensitive to solar radiation
change for SI at Lleida, but not sensitive for SQ at Jokioinen and Lleida.
Yield was directly correlated with solar radiation for SI, SQ, AP, HE, and
WO at Jokioinen and for SI and SQ at Lleida; however, the reverse re-
sponses were found for the other models (Fig. S3i, j). Biomass and yield
were most sensitive to solar radiation change for SI and SQ at the both
sites.

The standard deviation of the projected impacts of changes in solar
radiation across the eight crop models showed that the models had the
largest uncertainty in simulating impacts on yield, LAImax, and bio-
mass at Lleida, with the uncertainty increasing as the solar radiation
either decreased or increased (Fig. 3d). The standard deviation was

Fig. 2. (continued)
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much less than that for the projected impacts of temperature or CO2

increases. For each individual model, correlation analyses showed that
grain yield responses to solar radiation change were significantly and
positively correlated with changes in above-ground biomass for all the
models, in LAImax for most of the models, and in ET for all models
except MO and CS, and in maturity date for CS, MO, and HE at Jo-
kioinen. At Lleida, grain yield responses were significantly and

positively correlated with changes in above-ground biomass for all
models except MO and WO, in LAImax for all models except MO, HE
and WO; in ET for all models except MO and WO, and in maturity date
for CS, MO, and HE (Tables S12-S19).

Fig. 3. The standard deviations of the projected changes in the crop growth period (PD), LAImax, ET, biomass, and yield for different levels of CO2 (a), temperature
change (b), precipitation change (c), solar radiation change (d), each simulation setting (e) described in the Table 2, and the interaction effects (f), across the eight
crop models at Jokioinen (JO) and Lleida (LL).
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3.6. Interactive impacts of temperature, precipitation, solar radiation, and
CO2

The responses of maturity date, LAImax, ET, above-ground biomass,
and grain yield to the joint changes in temperature, precipitation, solar
radiation, and CO2 greatly diverged among the eight models (Fig. 5).
Under the joint impacts of temperature, precipitation, solar radiation,
and CO2, barley maturity date was affected mainly by temperature
change, and advanced more with climate warming, for all the models
(Fig. 5a,b). In addition, maturity date was also affected by precipitation
change for MO. In general, LAImax (Fig. 5c), above-ground biomass

(Fig. 5g), and yield (Fig. 5i) decreased more with increasing tempera-
ture and decreasing precipitation, which were alleviated by rising CO2,
at Jokioinen. The models indicate that increasing precipitation and CO2

can compensate for the negative impacts of temperature increase for
LAImax, above-ground biomass, and grain yield to some extent. At
Lleida, LAImax (Fig. 5d), above-ground biomass (Fig. 5h), and grain
yield (Fig. 5j) increased with increase in temperature, precipitation, and
CO2 because milder winter can be beneficial for the winter barley
cultivated there, although for SI and SQ they decreased with either
decreasing precipitation or temperature increasing by 4 ºC. Changes in
ET were dominated by temperature and precipitation changes, although

Fig. 4. Responses of the barley maturity date (a, b), LAI (c, d), ET (e, f), biomass (g, h) and yield (i, j) to change in temperature at Jokioinen, Finland (a, c, e, g, i) and
Lleida, Spain (b, d, f, h, j) in the eight crop models. The ranges of impacts for 1.0 to 2.0 ºC temperature increase based on the field warming experiments reported in
literature (Table S3) are marked between the panels. The error bars represent the standard deviations of estimates based on the 30 years simulation results.
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these changes were alleviated slightly by rising CO2, at both sites
(Fig. 5e, f). During the growth period, ET was generally reduced in
response to the joint changes in temperature, precipitation, solar ra-
diation, and CO2 for all the models except SI and WO at Jokioinen and
SI at Lleida.

The standard deviation of the projected changes across the eight
crop models showed that the crop models had the largest uncertainty in
simulating the joint impacts on crop yield, LAImax, and biomass at
Lleida (Fig. 3e). For each individual model, correlation analyses showed
that grain yield changes were significantly and positively correlated
with changes in above-ground biomass, ET, maturity date, and LAImax
at Jokioinen. At Lleida, grain yield changes were significantly and po-
sitively correlated with changes in above-ground biomass for all the
models except AP, in ET for all the models, in LAImax for all the models
except AP, HE, MO, and WO, and in maturity date for AP, SI, and SQ
(Tables S12-S19).

The interaction effects of temperature, precipitation, solar radiation
and CO2 on crop development, water use, growth, and yield greatly
varied among the eight crop models in terms of magnitude and even
change sign, and moreover were site, process, and model dependent
(Fig. S4). Maturity date was much affected by high temperature and
drought interactions for MO at Jokioinen (Fig. S4a, b). LAImax was
negatively affected by the interaction effects for most of the models at
Jokioinen and for HE, MC, MO, and SI at Lleida, but positively for CS
and AP at Lleida (Fig. S4c, d). ET was strongly influenced by the in-
teraction effects for MO and MC at Jokioinen, and for MC, HE, and MO
at Lleida (Fig. S4e, f). Above-ground biomass was greatly affected by
interactions for CS, MC, and MO at Jokioinen, and for CS, MC, SI, and
SQ at Lleida (Fig. S4g, h). Grain yield was affected by interactions for
CS, MC, and MO at Jokioinen, and for HE, MC, SI, and SQ at Lleida (Fig.

S4i, j). For HE and WO, biomass was not significantly affected by the
interactions, but grain yield was. In general, the interaction effects were
not significant for AP and WO. The standard deviation of the projected
changes across the eight crop models showed that crop models had the
largest uncertainty in simulating the interaction effects on crop yield,
LAImax, and biomass at Lleida (Fig. 3f).

3.7. Summary of comparisons among key processes and among crop models

Across the eight models and the settings in sensitivity analyses, the
standard deviations of simulated changes in maturity date, LAImax, ET,
aboveground biomass, and yield in response to changes in CO2, tem-
perature, precipitation, solar radiation, all the climate factors and their
interactions, were compared. The results showed that temperature and
CO2 relationships in the models were the major sources of the large
uncertainties in simulating climate change impacts, in particular for LAI
development and biomass accumulation (Fig. 6).

Owing to the uncertainty in simulating the fundamental processes of
crop growth and productivity, there were large uncertainties in simu-
lating crop responses to changes in each climate variable and their in-
teractions. We summarized and compared yield responses to changes in
temperature (+2 ºC at both Jokioinen and Lleida), precipitation (in-
creasing by 10% at Jokioinen and reducing by 10% at Lleida), solar
radiation (increasing by 10% at both Jokioinen and Lleida), and CO2

(increasing by 200 ppm at both Jokioinen and Lleida), as well as their
combinations, among the eight crop models (Fig. 7). The simulated
yield responses to each climate variable, their combinations, and their
interactions were quite different among the models in terms of mag-
nitude and even change sign, which illustrated why crop models di-
verge substantially in climate impact projections. The uncertainties that

Fig. 4. (continued)
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originated from the simulations of crop responses to temperature and
CO2 fertilization effects were particularly large. The impacts of each
climate variable on crop growth and productivity were offset or ad-
ditive, resulting in large discrepancies in climate impact projections.

4. Discussion

4.1. Why do crop models diverge substantially in climate impact
projections?

The present study provides insights into how crop models diverge in

simulating the major processes of crop development, growth, water use,
and yield formation in response to changes in temperature, precipita-
tion, solar radiation, CO2, and their interactions. The divergences can
be ascribed to the large differences in model structures among the eight
examined crop models (Tables S2-S9). For example, although most of
the models accounted for the impacts of temperature, photoperiod, and
vernalization on crop development, they did this using different
methods, with the result that the responses of crop maturity to tem-
perature changes have different sensitivities among them. MO also ac-
counted for the impacts water and nitrogen stresses on crop phenolo-
gical development with a stress factor (Table S6). As a consequence,

Fig. 5. Responses of the barley maturity date (a, b), LAI (c, d), ET (e, f), biomass (g, h) and yield (i, j) to joint changes in temperature, precipitation, solar radiation
and atmospheric CO2 concentration at Jokioinen, Finland (a, c, e, g, i) and Lleida, Spain (b, d, f, h, j) in the eight crop models. The error bars represent the standard
deviations of estimates based on the 30 years simulation results. The simulation settings are described in the Table 2.
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crop maturity was most sensitive to precipitation, solar radiation, CO2,
and the interactions between climate variables for the model. Different
from the other models, SI didn't account for the impacts of CO2 on
evapotranspiration, as a consequence, the simulated evapotranspiration
by the model increased with rising CO2 concentration.

The results showed that temperature and CO2 relationships in the
models were the major sources of the large uncertainties in simulating
climate change impacts, in particular for LAI development and biomass
accumulation (Fig. 6). All the models except MC and SQ used various
biomass-dependent approaches to model LAI. For most of these models,
the impacts of temperature and CO2 on LAI development were simu-
lated not directly, but indirectly through their influences on photo-
synthesis, respiration, or LUE, and consequently biomass accumulation.
Therefore, the uncertainty in LAI simulations may be ascribed to the
estimation of biomass, biomass partitioning to the leaves, or to both.
The equations applied in these models to simulate the impacts of
temperature and CO2 on photosynthesis, respiration, or LUE were quite
diverse (Tables S2-S9), which resulted in the large divergences in the
responses of biomass and LAI to changes in CO2 (Fig.2g,h,c,d) and
temperature (Fig.4g,h,c,d). These models directly calculated the impact
of CO2 on photosynthesis or LUE using a different CO2 impact function,
except HE, MC, and MO which used the Farquhar model (Tables S2-S9).
These models calculated directly the impact of temperature on photo-
synthesis or LUE using a different temperature impact function, except
CS and SI, which accounted for it indirectly through temperature in-
fluence on crop water use efficiency (CS) or on daily growth rate of LAI
and senescence (SI) (Tables S2-S9).

It is these different modeling approaches and, CO2 and temperature
relationships in the models that caused their substantial divergences in
climate impact projections. For example, CO2 and temperature re-
lationships in LAI development and photosynthesis in the CS and MC

models were quite different (Tables S3, S5). In CS, LAI development
was dependent on accumulated biomass, specific leaf area (SLA), and
partition coefficient, while biomass was simulated using LUE or tran-
spiration efficiency. The impacts of CO2 and temperature were in-
directly modelled through ther influences on LUE and on transpiration
efficiency (Tables S3). In MC, LAI development is driven by tempera-
ture and water. A process-based representation of the coupled CO2 and
H2O exchanges, based on the Farquhar photosynthesis model, is applied
to simulate photosynthesis, transpiration, and their CO2 and tempera-
ture relationships (Tables S5). As a result, LAI and biomass increased
much more with rising CO2 for CS than MC at Jokioinen (Fig.2). At
Lleida, LAI decreased with temperature increase because biomass de-
creased. maybe due to a shortening of crop growth duration for CS. By
contrast, LAI and biomass increased with temperature increase for MC
because it stimulated LAI growth and photosynthesis rate (Fig.4). Also
the interactive effects of temperature, precipitation, solar radiation, and
CO2 concentration on LAI and biomass diverged substantially between
the two models (Fig.S4).

Leaf area development is fundamental for crop photosynthesis, ET,
biomass accumulation, and yield formation, directly affecting canopy-
intercepted radiation, photosynthesis rate, ET, and the relative share of
evaporation and transpiration. For most of the models, yield was sig-
nificantly correlated with above-ground biomass and LAImax, and
above-ground biomass was significantly correlated with LAImax.
Therefore, the impacts of temperature and CO2 on LAI development are
expected to be the major causes for the large uncertainty in simulating
above-ground biomass and grain yield. These findings are supported by
several previous studies (Bannayan et al., 2005; Hasegawa et al., 2017).

It appears not to be practical at present to separate, across the
multiple models analyzed here, the impacts of each single process, such
as vernalization and water or nutrient stresses, because multiple

Fig. 5. (continued)
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processes are closely interacting and interlinked. It may, however, be
possible to investigate these details using a single model, using a set of
same input data and parameters, focusing on a single process (e.g., crop
phenology development) with a specific scheme of a modeling experi-
ment (for example, comparing several alternative modeling approaches
within a single model).

The sensitivity analyses in this study were used to dissect the rea-
sons underlying the discrepancies in climate change impact projections
by different crop models. The modeling settings for the sensitivity
analyses were carefully designed to cover the projected climate change
scenarios at the two sites in the 2050s and to address the key questions
related to modeling of important crop growth and productivity pro-
cesses. The results of the sensitivity analyses not only dissect the rea-
sons underlying the discrepancies in climate change impact projections
by different crop models, but also explain the projected climate change
impacts on barley growth and yield in the 2050s. For examples, HE
projected a strong yield increase during the 2050s at Lleida (Fig. 1j)
because yield benefited greatly from temperature and CO2 increases,
dropped moderately with a precipitation decrease, and suffered only
slightly from a solar radiation increase, with little interaction between
them in the model. By contrast, CS projected a severe yield decrease in
the 2050s at Lleida (Fig. 1j) because yield benefited primarily from a
CO2 increase, but dropped moderately with a temperature increase and
precipitation decrease, with little impact from a solar radiation

increase, and only small negative interactions between them in the
model. Therefore, the large discrepancy in climate impact projections
between the two models can be ascribed mainly to temperature and
CO2 relationships (Figs. 2, 4, 7).

4.2. Comparisons between controlled environment experimental data and
model simulations

Controlled environment experiments such as FACE (Ainsworth and
Long, 2005; O´Leary et al., 2015; Kimball, 2016) or free-air tempera-
ture-increase experiments (Ottman et al., 2012; Cai et al., 2016;
Chen et al., 2017; Fang et al., 2015) can provide information for
benchmarking and improving models. Experiments on barley and
wheat worldwide were collected from the literature (Tables S10 & S11)
and marked in Figs. 2 and 4. Barley and wheat are closely related and
both C3 grasses, which have comparable responses to changes in CO2

concentration and temperature (Ainsworth and Long, 2005). The ex-
periments were not conducted in the study sites and thus the compar-
isons are approximate, although meaningful to some extent. In this
regard, the simulated CO2 effects on LAImax, ET, above-ground bio-
mass and grain yield might be beyond the reasonable ranges for some
models. Likewise, the simulations of impacts of temperature increase on
LAImax, and consequently photosynthesis rate, biomass, and yield need
to be further improved for some models.

Fig. 6. Standard deviations of simulated changes in the maturity date, LAImax, ET, aboveground biomass, and yield in response to changes in CO2, temperature,
precipitation, solar radiation, all the climate factors and their interactions, by the eight crop models, at Jokioinen (a) and Lleida (b).
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In addition, controlled-environment experiments can help to
benchmark processes in models. For example, an experiment in Finland
using controlled temperature and CO2 on a perennial reed canary grass
showed that warming (+3.5 ºC above outside ambient temperature)
increased leaf growth, photosynthesis and above-ground biomass
(+30.3% for leaf and +21.8% for stem) during early growth
(Zhou et al., 2011). However, plant growth declined rapidly thereafter
with a lower above-ground biomass (−12.6% for leaf and −9.1% for
stem) at the end of growing season due to accelerated phenology reg-
ulation and consequent earlier growth senescence. Elevated CO2

(700 ppm) partially mitigated the adverse effects of high temperature
and low soil moisture and, as a result, the combination of warming and
elevated CO2 did not significantly increase above-ground biomass
(Zhou et al., 2011). Compared with the experiment, it seems that most
of these processes have been reasonably well incorporated in the eight
crop models, except that warming increased leaf growth at early stages
(Fig. 4c). This further confirmed that the response of LAI to temperature
increase should be improved in these models.

The biophysical processes of crop development, water use, growth,
and grain formation are finally subject to the interactions of multiple
climate change factors, instead of a single factor. The interaction effects
of multiple climate change factors could differ greatly from simple
combinations of single-factor responses. The main effects of each in-
dividual factor could be depressed or amplified by the interactive ef-
fects of multiple factors (Luo et al., 2008). Two-way interactions of
climate change factors on crop growth and yield, such as the interactive
effects of temperature and CO2, water and CO2, and high temperature

and drought have been studied in controlled environment field ex-
periments (Kimball et al., 1995; Erbs et al., 2015; Cai et al., 2016;
Wang et al., 2016). However, experiments on three-way or four-way
interactions are scarce.

In general, the simulated crop responses to simultaneous changes in
multiple climatic factors agree qualitatively with experimental evi-
dence. Nevertheless, the eight crop models greatly diverged in their
simulations of the interactions of temperature, precipitation, solar ra-
diation, and CO2 on LAI development, biomass, and grain yield. The
simulated interaction effects were also different at the two sites. Since
the effects include two-way, three-way, and four-way interactions
among temperature, precipitation, solar radiation, and CO2, they
cannot easily be validated here. An improvement in simulating the
main effects of each individual factor can reduce the uncertainty in
simulating the interaction effects to some extent (Luo et al., 2008).

4.3. Implications of this study for improvement of models and experimental
design

Although this study focused on barley models as an example, the
results are widely applicable for other cereal crop models because they
share the same modeling concepts and approaches (Palosuo et al., 2011;
Rötter et al., 2012; Holzworth et al., 2014). Our results shed light on the
reasons underlying the divergence among crop models in projecting
climate change impacts, and provide suggestions for improving the
models. For example, for the six crop models that use a biomass-de-
pendent approach to simulate LAI development, their responses to

Fig. 7. Simulated yield responses to changes in temperature, precipitation, solar radiation, and CO2, singly or in combination, as well as their interactions, by eight
crop models at Jokioinen (a) and Lleida (b). The error bars represent the standard deviations of estimates based on the 30 years simulation results.
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climate change regarding biomass accumulation, biomass partitioning
or both should be improved. Priority should be given to the impacts of
temperature and CO2 increases on LAI development for each of the
eight models. While this biomass-dependent approach has been shown
to simulate leaf area development fairly well under a range of current
environments (e.g., Gaydon et al., 2017), it however greatly over-
estimates leaf area development under elevated CO2 (Bannayan et al.,
2005). The approach is strongly dependent on the simulated biomass,
developmental stage- or thermal time-dependent leaf-stem partitioning,
and SLA. Most importantly, it does not account for the uncoupling of
leaf expansion and photosynthesis under water deficit (Muller et al.,
2011) and elevated CO2 (Ainsworth and Long, 2005), and the very
different temperature sensitivities of these two processes (Asseng et al.,
2013, 2015; Wang et al., 2017). Furthermore, biomass is subject to
complex interactions among nitrogen, CO2, temperature, and water
feedbacks between photosynthetic rate and organ growth and size.
Source–sink relationships may significantly modify photosynthesis rate,
partitioning, and biomass accumulation over time under elevated CO2

(Boote and Loomis, 1991; Grace, 1997), and biomass partitioning to
leaves can be reduced by elevated CO2 (Kim et al., 2003a, 2003b).
Furthermore, developmental stages may not capture the allometric re-
lationship between LAI and biomass (Ratjen et al., 2018). Leaf-stem
partitioning and SLA are not independent due to the allometric re-
lationship between LAI and biomass, and LAI may explain canopy SLA
better than developmental traits (Ratjen et al., 2018). However, these
mechanisms are rarely represented in current crop models. As a possible
solution, the leaf-stem partitioning and SLA could be simulated based
on LAI dynamics instead of developmental stage or thermal time
(Ratjen et al., 2018). Alternatively, leaf area development could be si-
mulated based on the availability of nitrogen rather than biomass
(Jamieson and Semenov, 2000; Sinclair et al., 2003; Martre and
Dambreville, 2018), which could improve the simulations of CO2 re-
sponses and capture their secondary processes (Vanuytrecht and
Thorburn, 2017). Temperature impact functions and the cardinal tem-
peratures in simulating crop phenological development, LAI develop-
ment, photosynthesis rate, ET, and yield formation need to be further
validated based on data from free-air temperature-increase experiments
(Wang et al., 2017).

The results of this study also have important implications for the
design of controlled-environment experiments in order to close the
knowledge gaps, improve our understanding of the mechanisms of
climate change impacts on crop development, growth, water use, and
grain formation, and improve crop models. For example, the impacts of
different levels of temperature and CO2 changes on many physiological
and developmental phenomena need to be conducted in contrasting
environments, such as Boreal vs. Mediterranean. The tradeoff between
the effects of solar radiation increase on photosynthetic rate and
drought stress need to be investigated further. Since for some models
simulated yield changes were inconsistent with above-ground biomass
changes, the impacts of extreme temperature, solar radiation, and
precipitation on grain formation processes also deserve more studies.
Finally, the three-way or four-way interactions of multiple climate
change factors on crop development, growth, water use, and yield
formation need to be investigated experimentally. Such knowledge and
data are not available so far, but essential to improve the current crop
models.

5. Conclusions

In this study, a new comprehensive analysis was conducted to look
holistically at the reasons why crop models diverge substantially in
climate impact projections and to investigate which biophysical pro-
cesses and knowledge gaps are key factors affecting this uncertainty and
should be given the highest priorities for improvement. Eight barley
models and eight climate projections for the 2050s were applied to
investigate the uncertainty from crop model structure in climate impact

projections for barley growth and yield at two sites. Furthermore,
sensitivity analyses were conducted on the responses of major crop
processes to major climatic variables including temperature, pre-
cipitation, irradiation, and CO2, as well as their interactions, for each of
the eight crop models. We showed that the temperature and CO2 re-
lationships in the models were the major sources of the large dis-
crepancies among the models in climate impact projections. In parti-
cular, the impacts of increases in temperature and CO2 on leaf area
development were identified as the major causes for the large un-
certainty in simulating changes in evapotranspiration, above-ground
biomass, and grain yield. The findings shed light on the reasons un-
derlying the divergence among crop models in projecting climate
change impacts, and provide suggestions for model improvement and
experimental design. The advancements in understanding the basic
processes and thresholds by which climate warming and CO2 increases
will affect leaf area development, crop evapotranspiration, photo-
synthesis, and grain formation in contrasting environments should be
stressed for modeling their impacts.
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