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Abstract

Wheat grain protein concentration is an important determinant of wheat quality for

human nutrition that is often overlooked in efforts to improve crop production. We

tested and applied a 32‐multi‐model ensemble to simulate global wheat yield and

quality in a changing climate. Potential benefits of elevated atmospheric CO2 con-

centration by 2050 on global wheat grain and protein yield are likely to be negated

by impacts from rising temperature and changes in rainfall, but with considerable
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disparities between regions. Grain and protein yields are expected to be lower and

more variable in most low‐rainfall regions, with nitrogen availability limiting growth

stimulus from elevated CO2. Introducing genotypes adapted to warmer tempera-

tures (and also considering changes in CO2 and rainfall) could boost global wheat

yield by 7% and protein yield by 2%, but grain protein concentration would be

reduced by −1.1 percentage points, representing a relative change of −8.6%. Cli-

mate change adaptations that benefit grain yield are not always positive for grain

quality, putting additional pressure on global wheat production.

K E YWORD S

climate change adaptation, climate change impact, food security, grain protein, wheat

1 | INTRODUCTION

If current trends in human population growth and food consump-

tion continue (Bajželj et al., 2014), crop production must be

increased by 60% by mid‐century to meet food demands and

reduce hunger (Godfray et al., 2010), but climate change will make

this task more difficult (Olesen et al., 2011; Porter et al., 2014;

Waha et al., 2013; Wheeler & Von Braun, 2013). Crop models are

used to simulate crop growth and development from local up to

global scales to assist in climate change impact assessments (Chenu

et al., 2017) and to evaluate agricultural adaptation options (Ruiz‐
Ramos et al., 2017), for example, to investigate potential effects of

altering crop management, like sowing crops earlier or later in the

season (Porter et al., 2014) or growing cultivars with different crop

traits (Semenov & Stratonovitch, 2015; Tao, Rotter, et al., 2017). A

growing number of studies describe climate change impacts on

crop yield, but the impacts on the nutritional value of the crops

have received much less attention even though this is a critical

aspect of food security (Haddad et al., 2016). Grain protein concen-

tration, the ratio of grain protein amount to grain yield, is an

important characteristic affecting the nutritional quality but also the

end‐use value and baking properties of wheat flour (Shewry & Hal-

ford, 2002). Globally, wheat provides 20% of protein for humans

(Tilman, Balzer, Hill, & Befort, 2011). Grain protein concentration,

like yield, depends on a combination of factors such as the crop

genotype, soil, crop management, atmospheric CO2 concentration

and weather conditions (Triboi, Martre, Girousse, Ravel, & Triboi‐
Blondel, 2006; Wieser, Manderscheid, Erbs, & Weigel, 2008). Ele-

vated CO2 concentration alone can increase the total amount of

protein in grain (Broberg, Högy, & Pleijel, 2017), but reduces its

concentration (Broberg et al., 2017; Myers et al., 2014). Grain pro-

tein concentration increases with drought stress and higher temper-

atures as a result of reduced starch accumulation (Triboi et al.,

2006).

We aimed to systematically study the combined effects of

CO2, water, nitrogen (N) and temperature on wheat grain protein

concentration in a changing climate for the world's main wheat

producing regions as part of the Agricultural Model Intercompar-

ison and Improvement Project (AgMIP) (Rosenzweig et al., 2013).

This is the most comprehensive study ever done of the effect of

climate change on yield and the nutritional quality of one of the

three major sources of human food security and nutrition (the

others being rice and maize). We previously demonstrated that

large ensembles of wheat models accurately simulate wheat yield

under different environmental conditions, and especially under high

temperatures (Asseng et al., 2015). Here, we used a crop model

ensemble to estimate the impact of climate change and a poten-

tial adaptation to such changes on global grain protein. To see if

crop models can simulate the impact of climate change
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adequately, we first tested whether an ensemble of 32 different

wheat models could reproduce the effects of increased tempera-

ture, heat shocks, elevated atmospheric CO2 concentration, water

deficit and the combination of these factors on yield and particu-

larly on grain protein. As there have been many climate change

impact studies without adaptation and studies testing the sensitiv-

ity of hypothetical traits, here, we included a trait adaptation

option based on realistic traits from a wide range of field observa-

tions that justify the existence of unique heat stress tolerance

traits in wheat.

2 | MATERIALS AND METHODS

2.1 | Crop models

Thirty‐two wheat crop models (Supporting Information Table S1)

were compared within the Agricultural Model Intercomparison and

Improvement Project (AgMIP; www.agmip.org), using two data sets

from quality‐assessed field experiments (sentinel site data) and then

applied at representative locations across the world. 18 of these

models simulated grain protein. All model simulations were executed

by the individual modeling groups.

2.2 | Field experiments for model testing

Two field/chamber experiments (INRA, FACE Australia) were used

for model testing.

2.2.1 | INRA temperature experiment

The response of the winter wheat cultivar Récital to heat shocks

(i.e., 2–4 consecutive days with maximum air temperature of 38°C)

during the grain filling period was studied during three winter grow-

ing seasons at INRA Clermont‐Ferrand, France (45.8°N, 3.2°E, 329 m

elevation) (Majoul‐Haddad, Bancel, Martre, Triboi, & Branlard, 2013;

Triboi & Triboi‐Blondel, 2002). For details see Supporting Informa-

tion Data S1.

2.2.2 | FACE Australia experiment (CO2 ×
temperature ×water)

FACE data were obtained from selected treatments from a designed

experiment from Horsham, Australia (36.8°S, 142.1°E, 128 m eleva-

tion) (Supporting Information Table S3). Details presenting the exper-

imental design (Mollah, Rm, & Huzzey, 2009), the experimental data

(Fitzgerald et al., 2016), and modeling analyses (O'Leary et al., 2015)

have previously been published. Data were collated from one culti-

var (cv. Yitpi) under two water regimes (rain‐fed and supplemental

irrigation), two nitrogen fertilization regimes (53 or 138 kg N ha−1),

and two sowing dates to create two growing season temperature

environments for both daytime ambient (365 ppm) and elevated

(550 ppm) atmospheric CO2 concentrations. For details see Support-

ing Information Data S1.

2.3 | Field experiments for adaptation

Asseng et al. (2015) recently suggested a combination of delayed

anthesis with an increased grain filling rate as possible adaptation for

wheat to increased temperature. Such trait combination has never

been shown yet to exist in the current available genetic material.

Therefore, here we first explored a wide range of existing field

experiments. We selected field experiments where a number of culti-

vars were grown across different temperature environments to

search for the existence of such trait combination and if such culti-

vars are indeed better adapted to a warming climate, that is, these

cultivars yield higher than other cultivars under warmer conditions.

In these data sets, we looked for pairs of cultivars where one or

more had a delayed anthesis in a warmer environment combined

with an increased grain filling rate, and yielded higher in the warmer

environment than a control cultivar (without these traits). Only the

cultivar pairs which fulfilled these conditions are mentioned here.

Four field experiments were considered and included experiments

from Egypt, Italy, USA and CIMMYT. In each experiment, cultivars

were compared under growing environments with increasing temper-

atures (through delayed sowing or growing at warmer locations). The

Egypt experiment included three cultivars grown over 3 years under

full irrigation (and sufficient N) across four temperature environ-

ments along the River Nile with two sowing dates. The Italy experi-

ment included two cultivars grown over 2 years under full irrigation

(and sufficient N) at one location with two sowing dates. In the Italy

experiment, the same experiment was repeated with N limitations.

The USA experiment included four cultivars (three cultivars were

used as a control) grown for 1 year under full irrigation (and suffi-

cient N) across 11 temperature environments along a transect in the

south‐east US with one sowing date. The CIMMYT experiment

included data from the International Heat Stress Genotype Experi-

ment (IHSGE) (Reynolds, Balota, Delgado, Amani, & Fischer, 1994),

with two cultivars grown over 2 years under full irrigation (and suffi-

cient N) across six temperature environments (experiments in differ-

ent countries) with two sowing dates. For details see Supporting

Information Data S1.

2.4 | Global impact assessment

The two main scaling methods most commonly used in climate

change impact assessment studies are sampling and aggregation

(Ewert et al., 2011, 2015). In sampling, the simulated points are

assumed to represent an area (van Bussel et al., 2016, 2015), while

in aggregation, an area is simulated with grid cells (Porwollik et al.,

2017) or polygons assuming a grid cell (or polygon) is equal to a

point. Each method differs in uncertainties with respect to input

information (high in gridded simulation (Anderson, You, Wood,

Wood‐Sichra, & WU WB, 2015), less in sampling as true point data

are used) and representation of heterogeneity (high in gridded simu-

lation, less in sampling which however depends on the sampling

strategy (Zhao et al., 2016). We have chosen stratified sampling, a

guided sampling method which improves the scaling quality (van
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Bussel et al., 2016), with several points per wheat mega region

(Gbegbelegbe et al., 2017). During the upscaling, a simulation result

of a location was weighted by the production a location represents

(Asseng et al., 2015). Liu et al. (2016) recently showed that stratified

sampling and weighted by the production with thirty locations across

wheat mega regions resulted at country and global scale in similar

temperature impact and uncertainty as aggregation of simulated grid

cells. The uncertainty due to sampling decreases with increasing

number of sampling points (Zhao et al., 2016). We therefore doubled

the thirty locations from Asseng et al. (2015) to sixty locations (Fig-

ure 1; Supporting Information Table S4) covering contrasting condi-

tions across all wheat mega regions. All models provided simulations

for thirty high‐rainfall or irrigated wheat‐growing locations (Locations

1–30, simulated with no water or nitrogen limitations), representing

about 68% of current global wheat production and thirty low‐rainfall
wheat‐growing locations with wheat yields below 4 t DM ha‐1 (Loca-

tions 31–60), representing about 32% of current global wheat pro-

duction (Reynolds & Braun, 2013). Each location represents an

important wheat‐growing area worldwide (Figure 1).

Additional details about the locations 1–30 can be found in

(Asseng et al., 2015). In contrast to the high‐rainfall locations 1–30,
soil types and N management vary among the low‐rainfall locations
31–60 (Supporting Information Figures S1–4). For details see Sup-

porting Information Data S1.

2.5 | Climate scenarios

There were two steps in global impact simulations. In step 1, six sce-

narios were simulated for the sixty global locations and 30 years of

climate. The six climate scenarios had a baseline climate (1981–
2010) or baseline climate with main daily temperature increased by

2 or 4°C, crossed with two atmospheric CO2 concentrations, 360

and 550 ppm (Table 1).

The baseline (1980–2010) climate data are from the AgMERRA

climate dataset (Ruane, Goldberg, & Chryssanthacopoulos, 2015),

which combines observations, data assimilation models, and satellite

data products to provide daily maximum and minimum temperatures,

solar radiation, precipitation, wind speed, vapor pressure, dew point

temperatures, and relative humidity corresponding to the maximum

temperature time of day for each location. These data correspond to

carbon dioxide concentration ([CO2]) of 360 ppm. The Baseline

+2°C and Baseline +4°C scenarios were created by adjusting each

day's maximum and minimum temperatures upward by that amount

and then adjusting vapor pressure and related parameters to main-

tain the original relative humidity at the maximum temperature time

of day. Observations and projections of climate change indicate that

relative humidity is relatively stable even as this implies increases in

specific humidity as temperatures increase (commensurate with the

Clausius‐Clapeyron equation; [Allen & Ingram, 2002]).

In a second step, wheat production in the sixty global locations

was simulated under a climate change scenario corresponding to rel-

atively high emissions for the middle of the 21st century (RCP8.5 for

2040–2069, using 571 ppm [CO2] at 2055 from RCP8.5). Projections

were taken from five global climate models (GCMs) (HadGEM2‐ES,
MIROC5, MPI‐ESM‐MR, GFDL‐CM3, GISS‐E2‐R), with historical con-

ditions modified to reflect projected changes in mean temperatures

and precipitation along with shifts in the standard deviation of daily

temperatures and the number of rainy days (Supporting Information

Figures S7–8). These scenarios were created using the “Enhanced

Delta Method” (Ruane, Winter, Mcdermid, & Hudson, 2015), and

GCMs were selected to include models with relatively large and rela-

tively small global sensitivity to the greenhouse gases that drive

F IGURE 1 The thirty locations representing high‐rainfall and irrigated wheat regions (blue) and thirty locations representing low‐rainfall/
low‐input regions (red) of the world used in this study. Wheat area from (Monfreda, Ramankutty, & Foley, 2008)
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climate changes to account for the uncertainty of the fifth coupled

model intercomparison project (CMIP5) GCMs ensemble (Ruane &

McDermid, 2017).

Each scenario was examined with current management as well as

under one possible trait adaptation, a cultivar combining delayed

anthesis and an increased potential grain filling rate. Therefore, there

were 11 treatments and each was simulated for 30 years at each of

the sixty locations.

To consider the diversity of model approaches of the 32 participat-

ing wheat models and allow all modelers to incorporate their models, we

proposed a simple but still physiological‐based trait combination. The

proposed traits were simulated in full combination only, to quantify the

impact of such a trait combination. The aim of this study was not to ana-

lyze the contribution of various individual traits, nor to explore the full

range of traits that could possibly assist in an adaptation strategy.

The proposed simple trait combination to minimize the impact of

future increased temperatures on global yield production included

(Supporting Information Table S6):

1. Delay anthesis by about 2 weeks under the Baseline scenario via

increased temperature sum requirement, photoperiod sensitivity,

or vernalization requirement. No change in the temperature

requirement for grain filling duration was considered.

2. Increase in rate (in amount per day) of potential grain filling by

20% (escape strategy).

2.5.1 | Testing the climate change response of
models without N dynamics

Simulation results from all 32 models were used in the grain yield

impact analysis. When analyzing the impacts on grain protein yield

and protein concentration, only 18 crop models were used that had

routines to simulate crop N dynamics leading to grain protein and

had been previously tested with field measurements. The yield distri-

butions and yield impacts simulated with the 32 models and the 18

models used in protein analysis were similar (Supporting Information

Figures S10–11).
We also applied the Kolmogorov–Smirnov two‐sample test to

test the differences in the distributions of simulated yield impacts

from the 18 models (used in the protein analysis) and the 32 models.

The distributions of climate change impacts on grain yields were dif-

ferent for the two multi‐model ensembles for the climate change

scenarios with genetic adaptation, but not without the genetic adap-

tion and for the trait effect (Supporting Information Table S7).

2.5.2 | Aggregation of local climate change to
global wheat production impacts

Before aggregating local impacts at sixty locations to global impacts

(Figure 1), we determined the actual production represented by each

location. The total wheat production for each country came from

FAO country wheat production statistics for 2014 (www.fao.org). For

each country, wheat production was classified into three categories

(i.e., high rainfall, irrigated, and low rainfall). The ration for each cate-

gory was quantified based on the Spatial Production Allocation

Model (SPAM) dataset (https://harvestchoice.org/products/data). For

some countries where no data were available through the SPAM

dataset, we estimated the ratio for each category based on the coun-

try‐level yield from FAO country wheat production statistics. The

high‐rainfall production and irrigated production in each country

were represented by the nearest high‐rainfall and irrigated locations

(Location 1–30). Low‐rainfall production in each country was repre-

sented by the nearest low‐rainfall locations (Location 31–60).
The global wheat grain and protein production impact was calcu-

lated using the following steps:

1. Calculate the relative simulated mean yield (or protein yield)

impact for climate change scenarios for 30 years (1981–2010)
per single model at each location.

2. Calculate the median across 32 models (or 18 in case of protein

simulations) and five GCMs per location (multi‐model [CMs and

GCMs] ensemble median). Note that CMs and GCMs simulation

results were kept separate only for calculating the separate CM

and GCM uncertainties (expressed as range between 25th and

75th percentiles).

3. Calculate the absolute regional production loss by multiplying the

relative yield (or protein yield) loss from the multi‐model ensem-

ble median with the production represented at each location (us-

ing FAO country wheat production statistics of 2014 from

www.fao.org, the latest reported yield statistics available at the

time of the study). Calculate separately for high‐rainfall/irrigated
and low‐input rainfed production. This assumes that the selected

simulated location is representative of the entire wheat‐growing

region surrounding this location.

TABLE 1 Outline of the baseline and climate change scenarios
simulated in this study

Period Scenario/GCM CO2 (ppm) Adaptation

1981–2010 Baseline 360 None

1981–2010 Baseline 360 2‐traits combination

1981–2010 Baseline +2°C 360 None

1981–2010 Baseline +4°C 360 None

1981–2010 Baseline 550 None

1981–2010 Baseline +2°C 550 None

1981–2010 Baseline +4°C 550 None

2040–2069 HadGEM2‐ES 571 None

2040–2069 MIROC5 571 None

2040–2069 MPI‐ESM‐MR 571 None

2040–2069 GFDL‐CM3 571 None

2040–2069 GISS‐E2‐R 571 None

2040–2069 HadGEM2‐ES 571 2‐traits combination

2040–2069 MIROC5 571 2‐traits combination

2040–2069 MPI‐ESM‐MR 571 2‐traits combination

2040–2069 GFDL‐CM3 571 2‐traits combination

2040–2069 GISS‐E2‐R 571 2‐traits combination

160 | ASSENG ET AL.

www.fao.org
https://harvestchoice.org/products/data
www.fao.org


4. Add all regional production losses to the total global loss.

5. Calculate the relative change in global production (i.e., global pro-

duction loss divided by current global production).

6. Repeat the above steps for the 25th and 75th percentile relative

global yield (or protein yield) impact from the 32 (or 18 in case

of protein simulations) model ensemble.

The 18‐model ensemble used for protein simulations simulated

similar yield impacts compared to the 32‐model ensemble (Support-

ing Information Table S7), but small yield differences between the

two ensembles made it necessary to normalize the simulated impacts

from the two ensembles for the calculation of impacts on grain pro-

tein concentration. The reported impacts on grain protein concentra-

tion are therefore the normalized numbers. The 32‐model ensemble

yield impacts and the simulated 18‐model ensemble relative grain

protein yield impacts are directly reported (i.e., without this normaliz-

ing). The calculation of changes in grain protein concentration is

shown with equations below.

Yield change (yc), due to climate change or the introduction of a

trait, was calculated as:?A3B2 tptxt=+-2pt?>

yC ¼ ~yð32Þfuture=~y
ð32Þ
baseline (1)

where ~yð32Þfuture and ~yð32Þbaseline are respectively future (with or without

adaptation) and Baseline yield as simulated by the median of 32

models. Grain protein yield change (pc) is calculated as:

pC ¼ ~pð18Þfuture=~p
ð18Þ
baseline (2)

where ~pð18Þfuture and ~pð18Þbaselines are respectively future (with or without

adaptation) and baseline protein yield as simulated by the median of

18 models.

Impact on grain protein concentration uses global mean grain

yield in 2014 as a baseline, reported as 3.31 t DM ha−1 (FAO, ) and

a mean grain protein percentage of 13% (based on dry matter grain

weight), which is a weighted average of the simulated results. While

there are no global statistics on grain protein, the simulated global

grain protein concentration appears reasonable, considering the pro-

tein content in the USDA World Wheat Collection has been

reported to range from 7% to 22% of the dry weight (Vogel, John-

son, & Mattern, 1976), but generally varies from about 10%–15% of

the dry weight for wheat cultivars grown under field conditions

(Shewry & Hey, 2015). Observed grain protein content in temperate

regions, like the Netherlands has been reported to range from 10%

to 15% (Asseng, Keulen, & Stol, 2000)). An average of 13.2% (rang-

ing from 10.5% to 16.3%) grain protein concentration has been

reported across 330 wheat varieties from China grown during 2010–
2011 (Yang, Wu, Zhu, Ren, & Liu, 2014) and an average of 13.4%

was reported across wheat fields in Finland during 1988–2012 (Pel-

tonen‐Sainio, Salo, Jauhiainen, Lehtonen, & Sievilainen, 2015).

In the simulated weighted average, the mean of the high‐rainfall/
irrigated locations 1–30 has a weight of about 2/3, and the mean of

the low‐rainfall/low‐input locations 31–60 has a weight of about 1/3,

according to their contribution to global production. The impact on

grain protein concentration (ΔGP%) was calculated as follows:

ΔGP% ¼ pC � 3:31� 0:13
yC � 3:31

� 3:31� 0:13
3:31

¼ 0:13
pC
yC

� 1

� �
(3)

This results in a change in grain protein concentration of −0.59

percentage point when using the changes in grain yield from 32 crop

models as used in the analysis. Alternatively, using the changes in

yield from the 18 crop models would result in a change in grain pro-

tein concentration of −0.36 percentage point (not used here).

3 | RESULTS

3.1 | Model testing

Results of crop model simulatiosns were compared to observations

from outdoor chamber and free‐air CO2 enrichment (FACE) experi-

ments with increased temperature, heat shocks, and elevated CO2

combined with increased temperature and drought stress. A statisti-

cal analysis on model ensemble performance for grain yield, grain

protein yield and grain protein content is given in Table S4, showing

RMSE for yield from 0.4 to 1.9 t/ha, with reasonable skill (EF) to sim-

ulate the variability for observed yield. RMSE for protein concentra-

tion ranged from 0.8% to 3.2% with poor skill due to the low

variability in the observed protein concentration data (Table S4).

Median predictions from this multi‐model ensemble reproduced

observed grain yields well including those affected by heat shock,

high temperature or elevated CO2 concentration (Figure 2a‐c). Con-
tinuous high temperature conditions during the grain filling period

(the period when the grain grows) reduced observed and simulated

biomass growth and yield more than a 4‐day heat shock, applied at

different times during the same growth period, but elevated CO2

increased biomass growth and yield in the observations and simula-

tions. In addition, changes in grain protein yield and protein concen-

trations were captured well (i.e., similar response in simulations and

observations) even under conditions where effects of temperature

interacted with effects of CO2 concentration and water (Figure 2d‐i).
The multi‐model ensemble median and at least 50% of the simula-

tion results for growth dynamics, final grain and protein yield, and

protein concentration were generally within the uncertainty intervals

of the measurements (Figure 2).

3.2 | Observed adaptation traits for climate change

Using datasets from observed field experiments (not simulations) at

different locations in the world (in USA, Mexico, Egypt, Sudan and

Italy), we found in these observations that existing genotypes with a

trait of an extended growing period to delay anthesis (also called

flowering), combined with a trait with a higher rate of grain filling

(i.e., potential grain filling rate which is met when assimilates are

available from photosynthesis and/or remobilization), are effective in

countering some of the yield declines occurring in non‐adapted culti-

vars when grown in warmer locations or during a warmer part of a

season (Figure 3a). Other cultivars which had a delayed anthesis but

not an increase grain filling rate (not shown here), did not yield
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higher than the non‐adapted cultivars. For some locations, where

observed grain protein data were available, the combination of

delayed anthesis and higher rate of grain filling traits also increased

grain protein yield in one cultivar compared to another cultivar (but

for several cultivar pairs) when grown under warmer growing

conditions, although these traits were not fully expressed under

cooler conditions (Figure 3b).

Observed grain and protein yield increased with this trait combi-

nation in warmer climates, but not when N supply was limited

(Figure 4).

F IGURE 2 Measurements and multi‐model simulations of total aboveground wheat biomass, grain yield, grain protein yield and grain
protein concentration for wheat treated with heat shocks, higher temperature, elevated atmospheric CO2 concentration, and different sowing
times or irrigation. (a, b and c) Total aboveground biomass (circles, continuous lines) and grain yields (triangles, dashed lines) for wheat for
three different experiments grown in control conditions or with (a) heat shocks of 38°C for 4 hr on 4 consecutive days during grain filling; (b)
continuous +10°C/+5°C (day/night) temperature increase during endosperm cell division/early grain filling; and (c) elevated CO2 (550 ppm).
Multi‐model ensemble medians (lines) and 25th to 75th percentile intervals (shaded areas) based on 32 simulation models are shown. Symbols
indicate medians and error bars the 25th to 75th percentile intervals of measurements. (d to i) Percent changes in grain yield (d and g) and
protein yields (e and h) and absolute changes in grain protein concentration (f and i) in response to chronic high temperature or heat shocks at
different developmental stages (d, e and f) and different combinations of atmospheric CO2 concentration, drought and sowing dates (g, h and
i). Data are medians of measured or simulated changes and error bars show 25th to 75th percentile intervals. In all panels, simulations are the
median of the 32 (grain yield) or 18 (grain protein) wheat model ensembles
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However, the relative change in observed grain yield was posi-

tively correlated with the change in grain protein concentration,

even under limited nitrogen supply (Figure 5).

3.3 | Global climate change impact

Availing of a robust predictor with a multi‐model ensemble (Fig-

ure 2) and evidence from field experiments for the existence for

traits to counteract detrimental effects from raising temperature

on crops (Figures 3–5), we assessed with crop models what

impact climate change would have on overall wheat grain and

protein yield and on protein concentration at other locations

and globally (Figure 1). The 32 tested crop models were applied

with five bias‐corrected global climate models (GCMs) for the

representative concentration pathway 8.5 (RCP8.5) for the

2050 s. The multi‐model median (crop models plus GCMs) impact

of climate change and the variation across crop models and

GCMs is shown for sixty locations around the globe representing

major wheat producing regions and climate zones (Figure 6). In

general, low‐ and mid‐latitude locations show negative yield

impacts from climate change, while high‐latitude locations show

some positive yield impacts. Negative impacts on protein yields

were predicted at many locations, including high‐latitude loca-

tions (Figure 6a).

F IGURE 3 Comparison of the relative
performance of measured wheat
genotypes with or without both delayed
anthesis and accelerated grain filling traits
grown under field conditions at different
temperatures. Changes in measured grain
yield (a and b), grain protein yield (c and d),
and grain protein concentration (e and f)
vs. changes in traits. Symbol colors indicate
mean temperatures during the growing
season (from sowing to maturity) at each
location in increasing order from deep
blue, light blue, to red. The advanced
wheat lines VA12W‐72 and GA06493–
13LE6 were compared to the standard
cultivars AGS2000, Jamestown, and
USG3120 in experiments at 10 locations in
the United States. Mean values for
AGS2000, Jamestown and USG3120 were
used as the control to calculate changes in
yield and protein. The modern cultivar
Bacanora 88 and the standard cultivar
Debeira were grown at one location in
Mexico over two consecutive seasons, and
at one location in Egypt and one in Sudan
both for one season. The cultivars Creso
and Claudio were grown at one location in
Italy for two consecutive growing seasons.
The modern elite cultivars Misr1 and Misr2
and the standard cultivar Sakha93 were
grown at four locations in Egypt. Grain
protein data were available for Italy and
Egypt experiments only. Solid lines are
standardized major axis regressions (all
p < 0.001)
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3.4 | Effect of adaptation

The field‐identified trait combination of delayed anthesis and

increased grain filling rate was introduced into the crop models (Sup-

porting Information Table S6). Simulated yields did not improve in

many of the low‐rainfall/low‐input locations due to a combination of

terminal drought and N limitation (Figure 4). Protein yields that

increased with the introduced trait combination were negatively

affected by climate change for many locations, including those at

high latitudes (Figure 6). But grain yields were improved in most

locations with the trait combination of delayed anthesis and

increased grain filling rate (Figure 6b).

The impact of climate change on grain protein concentration,

which varies with both grain yield and protein yield, was more

variable. Grain protein concentration varied between growing sea-

sons and locations as did the response to climate change and the

impact of the adapted trait combination (Figure 7). While the

combined impact of increased temperature, elevated CO2 concen-

tration, and change in rainfall for RCP8.5 indicates that grain yield

would increase for many seasons and locations, protein yield

increase would not keep pace. This would result in a reduction in

grain protein concentration for many situations (Figure 7). How-

ever, climate change and the adapted trait combination could lead

to an increase in grain protein concentration for low‐rainfall loca-
tions, particularly for those locations where yield is projected to

decline (Figure 7).

We scaled the simulated impacts up from fields to globe by

weighting each location with reported country wheat production

data. Despite the stimulating effect of elevated CO2 on crop growth,

global wheat production would only increase by 2.8% (−7.4 to

+14.0%, 25th to 75th percentile range combining crop model and

GCM uncertainty) by 2050 under RCP8.5. Most of the gains from

elevated CO2 on crop growth will be lost due to increasing

temperature. Simultaneously introducing the trait combination of

delayed anthesis and increased grain filling rate could increase global

yield to 9.6% (−7.8% to 27.0%) by 2050, with the impact from traits

being 6.8%.

The growth stimulus from a 100‐ppm increase in atmospheric

CO2 concentration is lost with an increase of about 2°C (increase of

1.0 to 4.2°C, 25th to 75th percentile range of crop model uncer-

tainty) according to the simulated multi‐model ensemble median (Fig-

ure 8).

However, when N limited growth, as is common for low‐rainfall
environments with low‐fertilizer inputs, the growth stimulus was

reduced. The multi‐model ensemble median, averaged over 30 years,

shows a CO2 effect of 8.4% global yield increase (5.7% to 12.8% for

50% of crop models, weighted by production) per 100 ppm increase

in CO2 (Figure 8). Protein yields were estimated to change by −1.9%

(−9.6% to +5.5% change, 25th to 75th percentile range combining

crop model and GCM uncertainty) at the global scale with climate

change, with many regions expected to be affected. Crop models

account for a dilution of crop N and grain protein concentration at

elevated CO2 concentration (Figure 9). When the trait combination

of delayed anthesis and increased grain filling was introduced, simu-

lated global protein yield changed to −0.2% (−12.1% to +12.0%

change) by 2050, with the impact from traits being 1.7%. Similarly,

while extremely variable between locations and seasons (Figure 7),

protein concentration is estimated to change by −0.6 percentage

points, representing a relative change of −4.6% (−0.3% to −1.0%

points, representing a relative change of −2.4% to −7.5%) by 2050

at the global scale. Greater losses in protein concentration would

occur in many regions and seasons, amounting to −1.1 percentage

points, representing a relative change of −8.6% (−0.6% to −1.5%

points, representing a relative change of −4.7% to −11.8%), with the

impact from traits being −0.5% points, representing a relative change

of −4.1%.

(a) (b)

(c) (d) F IGURE 4 Comparison of cultivars with
delayed anthesis and accelerated grain
filling rate to standard cultivars in different
temperature environments in Italy with
limited nitrogen (60 kg N ha‐1).
Relationship of observed (a and b) grain
yield and (c and d) protein yield to (a and
c) anthesis and (b and d) to grain filling
rate. Green (<13°C), dark red (13 to 15°C)
and red (> 15°C)
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3.5 | Impact uncertainty

For the simulated impact estimates, the share of uncertainty from

crop models was often larger than from the five bias‐corrected
GCMs (Supporting Information Figure S12). Uncertainties tended to

increase with adaptation and were larger for impact estimates for

protein yield than for grain yield. The largest crop model uncertain-

ties were for low‐ and mid‐latitude areas (Supporting Information

Figure S12).

4 | DISCUSSION

4.1 | Model testing

Median predictions from this multi‐model ensemble reproduced

observed grain yields well, consistent with other multi‐model

ensemble studies (Asseng et al., 2013; Bassu et al., 2014; Li et al.,

2015; Martre et al., 2015), but here including those affected by

heat shock, high temperature and elevated CO2 concentration, a

critical pre‐request for simulating climate change impacts. Heat

shock and high temperature interaction with elevated CO2 con-

centration have never been tested with any impact model before.

Multi‐model ensemble simulations were recently compared with

historical yields and showed that simulated yield impacts from

temperature increase were similar to statistical temperature yield

impact trends based on historical sub‐country, country, and global

yield records (Liu et al., 2016). This result suggests that interac-

tions between climate and crop models can be insensitive to the

methods chosen; thus, further supporting the use of the state‐of‐
the‐art multi‐model ensembles such as the one used for this

study.

Grain protein concentration is suggested by the simulation to

decline globally by −1.1% points, representing a relative change of

−8.6%, due to the simulated yield increase (for most locations) from

elevated atmospheric CO2 and the yield‐improving trait adaptation.

Attributing changes in observed protein trends is often hindered by

many confounding factors in the field. For example, a study across

fields in Finland from 1988 to 2012 showed a decline in grain pro-

tein concentration over this period of up to −0.7 grain protein %

during the last third of this period (Peltonen‐Sainio et al., 2015).

Some of this declined has been attributed to plant breeding for

higher yields and a declining response over time of grain protein

concentration to N fertilizer (Peltonen‐Sainio et al., 2015). In con-

trast, despite yield increases (by 51%) with variety releases since

1968 in North Dakota, USA, grain protein concentration has not

changed during this time (Underdahl, Mergoum, Schatz, & Ransom,

2008).

Depending on the target market, required protein concentrations

vary from 8% for pastries to >14% for pasta and bread, farmers

grow specific wheat categories for specific markets. In addition,

farmers might also attempt to manage N applications toward protein

outcomes, but their effectiveness is often hampered by in‐season
variability in growing conditions (Asseng & Milroy, 2006). Recent

trends in N fertilizer application (total amount of N fertilizer applied

in agriculture) in the 20 major wheat producing countries, including

China, India, Russia, USA and several European countries have

leveled off or even declined like in France and Germany (FAO, 2018)

and might further reduce wheat grain protein concentrations in the

future.

F IGURE 5 Comparison of wheat genotypes with delayed
anthesis and accelerated grain filling rate compared to standard
genotypes grown in the field in different temperature environments.
Relative change in measured grain protein yield (a) and absolute
change in grain protein concentration (b) against the relative change
in grain yield. Symbol colors refer to mean temperature during
growing season (planting to maturity) in increasing order from deep
blue, light blue, to red for average temperatures at each location.
The cv. Creso and the cv. Claudio were grown at one location in
Italy for two consecutive growing seasons, and the modern elite
cultivars Misr1 and Misr2 and the standard cultivar Sakha93 were
grown at four locations in Egypt. Dashed line is 1:1 and solid lines
are standardized major axis regressions
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4.2 | Adaptation traits for climate change

Rising temperatures are the main driver of projected negative cli-

mate change impacts on wheat yields (Porter et al., 2014). The

shortening of the growing period (the time from sowing to matu-

rity) with increasing temperatures has been identified as the main

yield‐reducing factor in another study, but not implemented

(Asseng et al., 2015). In a warmer climate, the growing period is

shorter so there is less time to intercept light for photosynthesis

resulting in less biomass accumulation and lower yields. To adapt

crops to a warmer climate, the growing period could be extended

by delaying anthesis. However, grain filling generally occurs during

the relatively hot period of the season in most wheat‐growing

regions (Asseng, Foster, & Turner, 2011), so yield might be reduced

due to the negative effect of even higher temperatures on the sen-

sitive processes of grain set (time when the number of grains is

F IGURE 6 Simulated multi‐model ensemble projection under climate change of global wheat grain yield (left half) and protein yield (right
half), (a) without genotypic adaptation and (b) with genotypic adaptation. Relative climate change impacts for 2036–2065 under RCP8.5
compared with the 1981–2010 baseline. Impacts were calculated using the medians across 32 models (or 18 for protein yield estimates) and
five GCMs (circle color) and the average over 30 years of yields using region‐specific soils, cultivars, and crop management
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set) and grain filling. Therefore, combining traits for delayed anthe-

sis and higher rate of grain filling, as shown in our study, is an

effective adaptation strategy for yield. While grain and protein yield

increased with the newly introduced trait combination in warmer

climates, grain protein concentration still declined in some cases

when other growth restricting factors such as limited N supply also

suppressed expression of these traits in a warmer climate. Applying

additional N fertilizer application might not be a simple solution for

climate change adaptation as major wheat‐producing countries,

such as France have been reducing N fertilizer application rates

since the late 1980 s (Brisson et al., 2010).

A key message from our study is that, our results suggest that

the combination of two simple traits through breeding can be used

to overcome the antagonism between grain yield and grain protein

concentration. That antagonism has continuously reduced the nutri-

tional and end‐use value of wheat since the “green revolution” in the

1960 s with strongly increasing grain yields through the introduction

of semidwarf genotypes combined with irrigation and fertilizers (Tri-

boi et al., 2006). The field‐observed positive correlation in field

experiments between grain yield and protein concentration could be

due to an increase in crop N accumulation at anthesis related to the

extended duration of the vegetative phase and a more efficient

translocation to grains during grain filling. But, it could also be due

to a higher nitrogen remobilization rate and earlier leaf senescence.

Hence, there is a need to improve the understanding of the physio-

logical basis for the field‐based observed positive correlation

F IGURE 7 Multi‐model impact of climate change with and without cultivar adaptation on the relationship between grain yield and protein
concentration. Projections of annual wheat grain yield and grain protein concentration are shown for baseline period 1981–2010 (black) for
RCP8.5 climate change impact in 2036–2065 with current cultivars (orange) or with genetic adaptation, that is, combined delayed anthesis
with increased rate of grain filling (cyan) for 30 individual years across sixty locations using region‐specific soils, cultivars and crop
management. (a) Grain yield vs. grain protein concentration for individual years and locations. Medians across GCMs and 18 crop models are
plotted. The ellipses capture 95% confidence levels of data in each treatment. Distributions of values for grain protein concentration (b) and
grain yield (c) for thirty low‐rainfall locations (dashed lines) and thirty high‐rainfall or irrigated locations (solid lines). (d) Absolute changes in
crop model ensemble medians for grain yield vs. grain protein concentration
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between grain yield and protein concentration through new targeted

field experiments.

4.3 | Global climate change impact

While field experiments are critical for developing and testing

hypotheses, these are limited to just a few sites and seasons. The

application of a multi‐model ensemble, combined with evidence from

field experiments for the existence for traits to counteract detrimen-

tal effects from raising temperature on crops, enabled us to assess

what impact climate change would have on overall wheat grain and

protein yield and on protein concentration at other locations and

globally. By applying the 32 tested crop models with five bias‐cor-
rected global climate models (GCMs), we covered a wide range of

available GCM outputs (McSweeney & Jones, 2016). The chosen

representative concentration pathway 8.5 (RCP8.5) for the 2050 s is

a high greenhouse gas concentration scenario with emissions con-

tinue to increase at current rates. Low‐ and mid‐latitude locations

show mostly negative yield impacts from climate change, while high‐
latitude locations show some positive yield impacts, consistent with

other global studies and other crops (Rosenzweig et al., 2014), but

F IGURE 8 Simulated impacts of increasing temperature on global
wheat grain production with 100 ppm increase in atmospheric CO2

concentration. Relative grain yield impacts were calculated from
simulated impacts of 550 ppm vs. 360 ppm CO2 (linearly
interpolated) and weighted by production. Center line shows crop
model ensemble median of 32 crop models and mean of 30 years
using region‐specific soils, cultivars, and crop management. The
shaded area indicates the 25th percentile and 75th percentile across
crop models. Dashed lines are linear extensions to +5°C beyond
simulated temperature range impacts. Equations show linear
regression for before and after cross‐point at 2°C

F IGURE 9 Simulated response to elevated CO2. In (a) relative
crop N response vs. relative crop biomass response to elevated CO2.
In (b) relative protein yield response vs. relative grain yield response
to elevated CO2. In (c) relative grain protein concentration response
vs. relative grain yield response to elevated CO2. Data are multi‐
model (18 models) ensemble median for 30 individual years during
baseline period (1981–2010) across sixty global locations with
360 ppm (baseline) and 550 ppm (elevated) CO2
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negative impacts on protein yields were predicted at many locations,

including high‐latitude locations.

4.4 | Effect of adaptation

The combined impact of increased temperature, elevated CO2 con-

centration, and change in rainfall for RCP8.5 indicates that grain

yield would increase for many seasons and locations, but protein

yield increase would not keep pace and would result in a reduction

in grain protein concentration for many situations. However, climate

change and the adapted trait combination could lead to an increase

in grain protein concentration for low‐rainfall locations, particularly
for those locations where yield is projected to decline.

Most of the gains from elevated CO2 on crop growth will be lost

due to increasing temperature consistent with other simulation and

field experimental studies (Asseng et al., 2015; Wheeler, Batts, Ellis,

Hadley, & Morison, 1996). Simultaneously introducing the trait com-

bination of delayed anthesis and increased grain filling rate could

increase global yield. About a third of the impact on grain yields

(2.1%) from this trait combination could be achieved globally by

introducing the adaptation in the baseline climate, although yield

would be reduced for many of the rainfed locations subject to termi-

nal drought.

A simulated growth stimulus from a 100‐ppm increase in atmo-

spheric CO2 concentration is suggested by our study to be lost with

an increase of about 2°C according to the simulated multi‐model

ensemble median and is consistent with field experiments (Wheeler

et al., 1996). Higher yield responses to elevated CO2 have been

reported in field experiments for wheat subject to drought stress

compared to well‐watered controls (Kimball, 2016; O'Leary et al.,

2015). This did not hold true, however, when N limited growth (Kim-

ball, 2016), as is common for low‐rainfall environments with low‐fer-
tilizer inputs. The multi‐model ensemble median here, averaged over

30 years, shows a CO2 effect of 8.4% global yield increase per

100 ppm increase in CO2. By comparison, observations from open

top chamber and FACE field studies have shown 10%–20% increases

in wheat yield per 100 ppm elevated CO2 (Ainsworth & Long, 2005;

Kimball, 2016; O'Leary et al., 2015), but less or even nil yield change

when N is limiting (Kimball, 2016). Additional N supply for crop

uptake could therefore become more important in the future. How-

ever, acceleration of soil organic matter turnover by higher tempera-

ture depletes soil carbon and N stocks, a process captured by some

models. Crop models also account for the dilution of crop N and

grain protein concentration at elevated CO2 concentration, giving

results similar to experimental wheat data (Pleijel & Uddling, 2012),

but do not consider that nitrate assimilation in crops could be inhib-

ited (Bloom, Burger, Rubio‐Asensio, & Cousins, 2010), so likely

underestimate the reduction in grain protein with climate change.

Other processes, like a possible effects of elevated CO2 via

stomata closure on canopy temperature (Kimball, Lamorte, & Pinter,

1999), not considered in the current models might also add to

under‐ or overestimation of simulated impacts. The same applies to

the poor understanding of genotype and CO2 interactions that are

hence not included in the models (Myers et al., 2014). Other factors

not included might also become important for future crop perfor-

mance, such as rising ground‐level ozone exposures, for example, in

southern and eastern Asia (Tao, Feng, Tang, Chen, & Kobayashi,

2017) and diming of light for photosynthesis in areas with high aero-

sol pollution.

Our analysis of the multi‐location field trials suggests that

crops with traits of delayed anthesis time and increased grain fill-

ing rate could be combined in wheat genotypes to combat the

negative effects of increasing temperature on yield. The genetics

of wheat anthesis time is determined by known genes so adapta-

tions can be made through breeding or cultivar choice (Griffiths

et al., 2009; Le Gouis et al., 2012). Although grain filling results

from interactions between multiple physiological processes, some

relevant major quantitative trait loci have been identified, and

grain filling rate can be increased efficiently through breeding

(Charmet et al., 2005; Wang et al., 2009). Some studies also

showed that the rates of dry mass and N accumulation have com-

mon genetic determinisms (Charmet et al., 2005), so breeding for

a higher rate of grain filling could improve both grain yield and

protein concentration. Importantly, anthesis time and grain filling

rate are mostly controlled by different loci (Wang et al., 2009)

suggesting that these two traits can be improved concomitantly.

The impact on yield and protein from this potential adaptation

depends on the availability of nitrogen during the post‐anthesis
period (Bogard et al., 2011) and might require additional nitrogen

remobilization into the grains (Avni et al., 2014; Uauy, Distelfeld,

Fahima, Blechl, & Dubcovsky, 2006).

4.5 | Impact uncertainty

The share of uncertainty from crop models was often larger than

from the five bias‐corrected GCMs, suggesting a need for more

research investments into impact models to reduce climate change

impact uncertainty estimates, although the chosen GCMs only repre-

sent part of the overall available GCM uncertainties (McSweeney &

Jones, 2016). The crop model uncertainty varied across locations,

while the GCM uncertainty showed less spatial variation. Uncertain-

ties tended to increase with adaptation and were larger for impact

estimates for protein yield than for grain yield, partly because fewer

crop models were available for the former. The largest crop model

uncertainties were for low‐ and mid‐latitude areas.

4.6 | Conclusions

Our simulation results demonstrate that climate change adaptations

that benefit grain yield are not necessarily positive for all aspects of

grain quality for human nutrition (Myers et al., 2014), particularly in

rainfed and low‐input cropping regions. Many of the regions likely to

be negatively affected are low‐ and mid‐latitude regions that are less

resilient to climate change, where populations are growing (Roser &

Ortiz‐Ospina, 2017) and food demand is increasing rapidly (Godfray

et al., 2010).
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Supplementary Materials and Methods  1 

  2 

Table S1. List of the 32 wheat crop models used in the AgMIP Wheat study. 3 

Code Name (version) Reference Documentation 

AE APSIM-E* (Chen et al., 2010a, Keating et al., 

2003, Wang et al., 2002) 

http://www.apsim.info/Wiki 

AF AFRCWHEAT2* (Porter, 1984, Porter, 1993, Weir 

et al., 1984) 

Request from John Porter: jrp@plen.ku.dk 

AQ AQUACROP (V.4.0) (Steduto et al., 2009) http://www.fao.org/nr/water/aquacrop.html 

AW APSIM-Wheat (V.7.3)* (Keating et al., 2003) http://www.apsim.info/Wiki 

CS CropSyst (V.3.04.08) (Stockle et al., 2003) http://modeling.bsyse.wsu.edu/CS_Suite_4/CropSyst/index.html 

DC DSSAT-CERES-Wheat (V.4.0.1.0)* (Hoogenboom &  White, 2003, 

Jones et al., 2003, Ritchie et al., 

1985) 

http://dssat.net/ 

DN DSSAT-Nwheat* (Asseng, 2004, Kassie et al., 2016) http://dssat.net/ 

DR DSSAT-CROPSIM (V4.5.1.013)* (Hunt &  Pararajasingham, 1995, 

Jones et al., 2003) 

http://dssat.net/ 

DS DAISY (V.5.24)* (Hansen et al., 2012, Hansen et al., 

1991) 

http://daisy.ku.dk 

EI EPIC-I (V0810) (Balkovič et al., 2013, Balkovič et 

al., 2014, Kiniry et al., 1995, 

Williams, 1995, Williams et al., 

1989) 

http://epicapex.tamu.edu/epic 

EW EPIC-Wheat(V1102) (Izaurralde et al., 2006, Izaurralde 

et al., 2012, Kiniry et al., 1995, 

http://epicapex.brc.tamus.edu 

mailto:jrp@plen.ku.dk


3 
 

Williams, 1995, Williams et al., 

1989)  

GL GLAM (V.2 updated) (Challinor et al., 2004, Li et al., 

2010) 

https://www.see.leeds.ac.uk/research/icas/research-themes/climate-

change-and-impacts/climate-impacts/glam 

HE HERMES (V.4.26)* (Kersebaum, 2007, Kersebaum, 

2011) 

http://www.zalf.de/en/forschung/institute/lsa/forschung/oekomod/herme

s 

IC INFOCROP (V.1) (Aggarwal et al., 2006) http://infocrop.iari.res.in/wheatmodel/UserInterface/HomeModule/Defa

ult.aspx 

LI LINTUL4 (V.1) (Shibu et al., 2010, Spitters &  

Schapendonk, 1990) 

http://models.pps.wur.nl/node/950 

L5 SIMPLACE<Lintul-5* 
SlimWater3,FAO-56, 

CanopyT,HeatStressHourly 

(Gaiser et al., 2013, Shibu et al., 

2010, Spitters &  Schapendonk, 

1990, Webber et al., 2016) 

http://www.simplace.net/Joomla/ 

LP LPJmL (V3.2) (Beringer et al., 2011, Bondeau et 

al., 2007, Fader et al., 2010, 

Gerten et al., 2004, Müller et al., 

2007, Rost et al., 2008) 

http://www.pik-potsdam.de/research/projects/lpjweb 

MC MCWLA-Wheat (V.2.0) (Tao et al., 2009a, Tao &  Zhang, 

2010, Tao &  Zhang, 2013, Tao et 

al., 2009b) 

Request from taofl@igsnrr.ac.cn 

MO MONICA (V.1.0)* (Nendel et al., 2011) http://monica.agrosystem-models.com  

NC Expert-N (V3.0.10) – CERES (V2.0)* (Biernath et al., 2011, Priesack et 

al., 2006, Ritchie et al., 1987, 

Stenger et al., 1999) 

http://www.helmholtz-muenchen.de/en/iboe/expertn 

NG Expert-N (V3.0.10) – GECROS 

(V1.0)* 

(Biernath et al., 2011, Stenger et 

al., 1999) 

http://www.helmholtz-muenchen.de/en/iboe/expertn 

NP Expert-N (V3.0.10) – SPASS (2.0)* (Biernath et al., 2011, Priesack et 

al., 2006, Stenger et al., 1999, 

http://www.helmholtz-muenchen.de/en/iboe/expertn 
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Wang &  Engel, 2000, Yin &  van 

Laar, 2005) 

NS Expert-N (V3.0.10) – SUCROS (V2) (Biernath et al., 2011, Goudriaan 

&  Van Laar, 1994, Priesack et al., 

2006, Stenger et al., 1999) 

http://www.helmholtz-muenchen.de/en/iboe/expertn 

OL OLEARY (V.8)* (Latta &  O'Leary, 2003, OLeary &  

Connor, 1996a, OLeary &  Connor, 

1996b, Oleary et al., 1985) 

Request from gjoleary@yahoo.com 

S2 Sirius (V2014)* (Jamieson &  Semenov, 2000, 

Jamieson et al., 1998, Lawless et 

al., 2005, Semenov &  Shewry, 

2011) 

http://www.rothamsted.ac.uk/mas-models/sirius.php 

SA SALUS (V.1.0)* (Basso et al., 2010, Senthilkumar 

et al., 2009) 

http://salusmodel.glg.msu.edu 

SP SIMPLACE<Lintul-2 
CC,Heat,CanopyT,Re-Translocation 

(Angulo et al., 2013) http://www.simplace.net/Joomla/ 

SQ SiriusQuality (V3.0)* (Ferrise et al., 2010, He et al., 

2010, Maiorano et al., 2017, 

Martre et al., 2006) 

http://www1.clermont.inra.fr/siriusquality 

SS SSM-Wheat (Soltani et al., 2013) Request from afshin.soltani@gmail.com 

ST STICS (V.1.1)* (Brisson et al., 2003, Brisson et 

al., 1998) 

http://www6.paca.inra.fr/stics_eng 

WG WheatGrow (V3.1) (Cao et al., 2002, Cao &  Moss, 

1997, Hu et al., 2004, Li et al., 

2002, Pan et al., 2007, Pan et al., 

2006, Yan et al., 2001)  

Request from yanzhu@njau.edu.cn 

WO WOFOST (V.7.1) (Boogaard &  Kroes, 1998) http://www.wofost.wur.nl 

*Models that have routines to simulate crop and grain nitrogen dynamics leading to grain protein and have been tested with field measurements before. These 18 models have 

been used in the grain protein analysis.  

 1 
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Field experiments for model testing 1 

INRA temperature experiment 2 

In all INRA experiments, crops were grown outside in 2 m2 containers with 0.5 m depth, filled with a 2:1 (v:v) mixture of black soil 3 

and peat. Seeds were sown on 10 November 1999, 08 November 2000, and 07 November 2006 at 2.5 cm from the soil surface with a 4 

density of 578 seeds m-2 and a row spacing of 6.25 cm, resulting in 554 to 666 fertile tillers m-2 at anthesis, mimicking field density 5 

and plant competition. The high plant density inhibited the development of axillary tillers, which coordinated the development of the 6 

crops within and between the containers. In 1999 and 2000, ammonium phosphate (N: P, 18:46; 20 g m-2) and potassium sulphate 7 

(K2SO4; 20 g m-2) were hand-dressed at sowing. The preceding crops were sunflower and wheat, and three years fallow in 1999, 2000, 8 

and 2006. During the wheat growth period, crops were fertilized with ammonium-nitrate or ammonium-phosphate and received a total 9 

of 15 to 20 g N m-2 in two to three applications between one week after the beginning of tillering and male meiosis. From sowing to 10 

anthesis the crops received the following amounts of rainfall: 199 mm (1999-2000), 247 mm (2000-2001), and 145 mm (2006-2007). 11 

In addition, during that period the crops received the following irrigation amounts to maintain the soil water content above 80% of 12 

field capacity: 208 mm (1999-2000), 90 mm (2000-2001), and 143 mm (2006-2007). At anthesis, all the containers were irrigated to 13 

field capacity by applying 90 mm of water, they then received 6 to 50 mm of water every 2 to 7 days until maturity to replace 14 

measured crop evapotranspiration. Spikes were tagged at anthesis to allow accurate determination of the developmental stage when 15 

harvesting. All other crop inputs, including disease and pest control, were applied at levels to prevent diseases and pests from limiting 16 

plant growth and grain yield. 17 

Between 1 and 5 d after anthesis the containers were transferred under transparent enclosures under natural light in the Crop Climate 18 

Control and Gas Exchange Measurement (C3-GEM) experimental platform. The C3-GEM platform allows monitoring and controlling 19 

air temperature, air CO2 concentration, water supply, and gas exchange of up to four 2 m2 containers (Triboï et al., 1996). Air CO2 20 

concentration was maintained at 378 ± 5 ppm. Different temperature regimes were applied under the enclosures. In 2000, day/night air 21 
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temperatures were controlled at 18 °C/10 °C (control treatment) or at 28 °C/15 °C (chronic high temperature treatment). Heat shocks 1 

consisting of two consecutive days with air temperature of 38 °C for 3 h between 11:30 and 14:30 solar time during the first day and 6 2 

h between 10:15 and 16:15 solar time during the second day were applied starting 30 days after anthesis (i.e., during the linear grain 3 

filling period) on one container maintained at the cooler temperature regime the rest of the time. In 2001, all containers were 4 

maintained at 18 °C/10 °C (day/night) and heat shocks consisting of 4 h a day at 38 °C (air temperature), between 10:00 and 14:00 5 

solar time and 20 °C (air temperature) the rest of the day were applied for four consecutive days starting 7 days after anthesis (i.e., 6 

during the endosperm cell division period) or 18 days after anthesis (i.e., during the linear grain filling period). In 2007, all containers 7 

were maintained at 21°C/14°C (day/night) and heat shocks consisting of 4 h a day at 38 °C (air temperature), between 10:00 and 14:00 8 

solar time and 21 °C (air temperature) the rest of the day were applied for four consecutive days during either the endosperm cell 9 

division period (starting 8 days after anthesis), the linear grain filling period (starting 23 days after anthesis), or during both phases. 10 

The rate of heating or cooling before and after the heat shocks was 8.5°C h-1. Air relative humidity was maintained between 65% and 11 

80%, corresponding to a vapor pressure deficit (VPD) of 0.5/0.3 kPa (day/night) in 2000 and 2001, and 0.6/0.4 kPa (day/night) in 12 

2007. During the 4 h of heat shock, the air relative humidity ranged from 40% to 50% and the air VPD from 3.0 to 3.7 kPa. 13 

To study the dynamic accumulation of dry mass and total N in leaves, stems, chaffs, and grains, three replicates of 20 plants were 14 

collected in each container every 2 to 9 days from anthesis to grain maturity. At maturity 0.4 to 1.25 m2 were harvested. Samples were 15 

collected starting from the south. Stems, leaves, chaffs, and grains were separated, and their dry mass was determined after oven 16 

drying at 80 °C to a constant mass. Total N content of oven-dried samples was determined by the Kjeldhal method using a Kjeltec 17 

2300 analyser (Foss Tecator AB, Hoeganaes, Sweden) in 2000 and 2001, and by the Dumas combustion method using a FlashEA 18 

1112 N/Protein analyser (Thermo Electron Corp., Waltham, MA, USA) in 2007. Grain protein concentration was calculated from the 19 

percentage of total N by multiplying by a conversion factor of 5.62 for grains of wheat (Mossé et al., 1985).  20 

 21 
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Table S2. Layout of the experiment treatments of the INRA Clermont-Ferrand temperature experiments. Grain yield and protein data are medians and the 25th 1 
and 75th quantiles between squared brackets. 2 

Treatment 

name 

Sowing date Post-anthesis 

day/night air 

temperature 

(°C) 

Treatment description Grain yield 

(t DM ha-1) 

Grain protein 

(% of yield) 

HSE01_CTRL 10-Nov-99 18/10 Control 7.94 [7.87-8.02] 10.28 [10.28-10.29] 

HSE02_HS1 10-Nov-99 18/10 Heat shock during the 

grain filling lag period (2 

days at Tmax 38°C during 

4 hours) 

7.98 [7.87-8.07] 12.23 [12.06-12.17] 

HSE03_HT 10-Nov-99 28/15 Chronic high temperature 

during grain filling 

6.22 [6.05-6.38] 12.29 [12.25-12.45] 

HSE04_CTRL 08-Nov-00 18/10 Control 8.45 [8.45-8.45] 10.28 [10.27-10.34] 

HSE05_HS1 08-Nov-00 18/10 Heat shock during the 

grain filling lag period (4 

days at Tmax 38°C during 

4 hours) 

6.67 [6.67-6.67] 12.13 [12.13-12.28] 

HSE06_HS2 08-Nov-00 18/10 Heat shock during the 

linear grain filling period 

(4 days at Tmax 38°C 

during 4 hours) 

7.45 [7.45-7.45] 12.59 [12.52-12.77] 

HSE07_CTRL 07-Nov-06 21/14 Control 6.93 [6.75-7.32] 11.52 [11.27-11.66] 

HSE08_HS1 07-Nov-06 21/14 Heat shock during the 

grain filling lag period (4 

days at Tmax 38°C during 

4h) 

7.01 [6.28-7.32] 11.66 [11.52-12.13] 

HSE09_HS12 07-Nov-06 21/14 Heat shock during both 

the grain filling lag period 

and the linear grain filling 

5.6 [5.37-5.83] 13.46 [13.57-13.32] 
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period (2 x 4 days at Tmax 

38°C during 4h) 

HSE10_HS2 07-Nov-06 21/14 Heat shock during the 

linear grain filling period 

(4 days at Tmax 38°C 

during 4h) 

6.31 [5.44-6.63] 12.69 [13.14-12.73] 

 1 

 2 

AGFACE Australia experiment (CO2 × temperature × water)  3 

The agronomic design of the AGFACE Australia experiment with the two times of sowing over three years (2007-2009) comprised a 4 

complete randomized block experimental design of four replicates. Sowing time altered biomass partitioning including yield because 5 

crops are forced to develop into warmer, less efficient conditions as summer approaches. 6 

Gravimetric soil water content was measured at sowing and harvest using a hydraulically operated soil sampler. Sampling was done 7 

for layers 0-0.1m and 0.1-0.2m and for 0.2 m increments thereafter to 2 m from one core per plot (42 mm diameter cores). Soil 8 

mineral nitrogen (NO3 and NH4) was also measured from an additional core taken close to the sampling time of the soil water 9 

measurements. Soil bulk density was measured from 70 mm diameter × 75 mm deep sampling rings from each octagonal area. Large 10 

soil mineral nitrogen content (~300 kg N ha-1) at the site precluded any significant effects of applied N, so soil analyses were pooled 11 

across the N treatments.  12 

Biomass samples taken at stem elongation (DC31), anthesis (DC65), and maturity (DC90) were oven dried at 70oC and leaf and stem 13 

area measurements were made from using an electronic planimeter from subsamples comprising approximately 25% of the collected 14 

fresh biomass. Mean sowing plant density measured by plant counts approximately three weeks after emergence was 120 plants m-2 15 

and ranged from 60 to 175 plants m-2. Grain yield was measured at maturity including its component grain number per m2 and grain 16 
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dry mass and nitrogen content. Agronomic management at both sites was according to local practices, including spraying fungicides 1 

and herbicides, as needed. Granular phosphorus and Sulphur (i.e., ‘superphosphate’) were incorporated into the soil at sowing at rates 2 

between 7 and 9 kg P ha-1 and 8 and 11 kg S ha-1 depending on the year. Because of large variability across the experimental site, the 3 

initial soil water content at sowing across the ambient and elevated CO2 treatments were pooled to be consistent with single soil type 4 

parameters for the site (O'Leary et al., 2015). 5 

 6 

Table S3. Summary of 18 selected treatments used to compare the simulated and observed grain yield and grain protein concentration from the Horsham FACE 7 
experiment (AGFACE). Grain yield and protein data are medians and the 25th and 75th quantiles between squared brackets. 8 

Treatment 

name 

Sowing 

date 

CO2 

(ppm) 

Sowing Irrigatio

n (mm) 

Applied N 

(kg N ha-1) 

Grain yield 

(t DM ha-1) 

Grain protein  

(% of yield) 

A7T1 + N+I 18-Jun-07 365 Early 96 138 3.15 [3.06-3.23] 15.28 [15.45-15.17] 

E7T1+N+I 18-Jun-07 550 Early  96 138 4.17 [3.73-4.66] 14.76 [14.79-14.67] 

A7T2 +N+I 23-Aug-07 365 Late 96 138 2.04 [1.34-2.81] 15.37 [15.79-15.07] 

E7T2+N+I 23-Aug-07 550 Late 96 138 3.25 [2.92-3.8] 14.65 [15.11-14.4] 

A7T2+N-I 23-Aug-07 365 Late 48 138 2.09 [1.81-2.39] 15.49 [15.67-15.29] 

E7T2+N-I 23-Aug-07 550 Late 48 138 2.15 [1.86-2.4] 15.47 [15.7-15.2] 

A8T1+N+I 04-Jun-08 365 Early 40 53 2.86 [2.41-3.48] 18.47 [19.35-17.75] 

E8T1+N+I 04-Jun-08 550 Early  40 53 3.88 [3.5-4.46] 17.06 [17.75-15.79] 

A8T2+N+I 05-Aug-08 365 Late 80 53 1.83 [1.7-1.92] 17.74 [18.41-17.28] 

E8T2+N+I 05-Aug-08 550 Late 80 53 2.09 [1.67-2.48] 16.17 [16.6-16.2] 

A8T2+N-I 05-Aug-08 365 Late 25 53 1.43 [1.33-1.48] 16.81 [16.77-16.91] 

E8T2+N-I 05-Aug-08 550 Late 25 53 0.89 [0.68-1.24] 18.39 [18.99-17.71] 

23-Jun-09 23-Jun-09 365 Early 70 53 2.56 [2.18-2.89] 17.16 [17.57-17.13] 
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 1 

 2 

 3 

 4 

 5 

Field experiments for adaptation  6 

Egypt experiment 7 

Experimental data from Egypt were collected from four field experimental sites along the river Nile over three growing seasons 8 

(2011/2012, 2012/2013 and 2013/2014).These locations were based on the variability of agro-climatic zones in Egypt from North to 9 

South (Khalil et al., 2011). The locations from North (moderate temperature) to South (high temperature) were as follows: Sakha 10 

(North delta, lower Egypt, 31.0° N, 30.9° E, 5 m elevation); Menofya (Middle delta, 30.7° N, 31.0° E, 10 m elevation); Benisuef 11 

(Middle Egypt, 29.1° N, 31.0° E, 30 m elevation); and Aswan (upper Egypt, 23.9 N°, 32.9° E, 180 m elevation). Daily measured 12 

weather data were collected at the four field experiments by the Central Laboratory of Agricultural Climate (CLAC) in Egypt 13 

(www.clac.edu.eg) and used for specifying the range of wheat growing season mean temperature in each location. Based on the World 14 

Reference Base for Soil Resources, the main soil group along the river Nile is Fluvisols, and main texture is clay and loamy clay 15 

(FAO, 1998, Taha, 2000).  16 

The field experiments were conducted using two of the most common modern cultivars (Misr2 and Misr1) and a standard cultivar 17 

(Sakha93) under full irrigation and high fertilization (180 kg N ha-1). Cultivars were sown on two planting dates, 20 November, which 18 

was the date recommended by (MALR, 2003), and 30 November (late sowing), which provided a contrasting temperature regime at 19 

the same location.  20 

23-Jun-09 23-Jun-09 550 Early  70 53 3.04 [2.72-3.3] 15.03 [14.91-15.94] 

19-Aug-09 19-Aug-09 365 Late 60 53 1.24 [1.14-1.38] 18.93 [19.22-18.72] 

19-Aug-09 19-Aug-09 550 Late 60 53 1.79 [1.32-2.34] 18.86 [18.71-18.25] 

19-Aug-09 19-Aug-09 365 Late 0 53 0.98 [0.84-1.17] 21.51 [21.9-19.9] 

19-Aug-09 19-Aug-09 550 Late 0 53 1.61 [1.43-1.93] 18.72 [18.96-17.41] 

http://www.clac.edu.eg/
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Field experiment measurements included 50% anthesis date, physiological maturity date, grain yield, for all cultivars under both 1 

recommended and late planting dates. Determination of nitrogen content in oven dry samples was carried out using Kjeldahl method 2 

and the percentage of total nitrogen was converted to protein concentration by multiplying by a conversion factor of 5.7 for grains of 3 

wheat (Mossé et al., 1985). 4 

 5 

Italy experiment 6 

Experiments were carried out in 2003/2004 and 2004/2005 at the experimental station in Ottava, Sardinia, Italy (41°N, 8°E, 80 m 7 

elevation). The soil at the site is a sandy-clay-loam of depth about 0.6 m overlaid on limestone (Xerochrepts), with an average 8 

nitrogen content of 0.76%, and a C:N (w:w) ratio of 12. The soil water content was 22.4% (w:w) at field capacity (-0.02 MPa), and 9 

11.9% at -1.5 MPa. The climate is typically Mediterranean, with a long-term average annual rainfall of 538 mm. In 2003/2004, the 10 

first sowing was made on 20 November and the second on 16 February. In 2004/2005, the first sowing was made on 5 January and the 11 

second on 17 March. Nitrogen fertilizer was applied at sowing at 60 kg N ha-1 or 100 kg N ha-1 as urea and ammonium bi-phosphate, 12 

respectively. The cv. Claudio and cv. Creso analyzed in this study were part of a wider set of 20 cultivars. In both seasons, two 13 

adjacent fields were assigned to the two sowing dates and divided into three blocks. Within each block, nitrogen rate represented the 14 

main plots, and cultivars represented the sub-plots. Plots were 10 m2. Sprinkler irrigation was used to ensure optimal growing 15 

conditions. Weeds, pests, and diseases were chemically controlled.  16 

Anthesis (anthers exerted from the spikelets) and maturity (‘yellow peduncle stage’) (Chen et al., 2010b) were timed when 50% of the 17 

ears in a plot reached the stage. At maturity, two 1 linear meter samples per plot from different rows were cut at the ground level, and 18 

then air-dried and weighed. Ears were separated from the rest of the sample, and then counted and threshed. Grain yield was 19 

calculated on a whole plot basis, following mechanical harvesting. Grain nitrogen concentrations were determined by the Kjeldhal 20 
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method and the percentage of total nitrogen was converted to protein concentration by multiplying by a conversion factor of 5.7 for 1 

grains of wheat (Mossé et al., 1985). More details about the experiments can be found in (Giunta et al., 2007). 2 

 3 

USA experiment 4 

Two soft wheat advanced breeding lines, VA12W-72 developed by university of Virginia and GA06493-13LE6 developed by 5 

university of Georgia, and three standard cultivars, AGS2000, Jamestown, and USG3120, were planted at the plant science research 6 

and education unit in Citra (29.4° N, 82.2° W, 24 m elevation), FL on 15 December 2014. The experiment was laid out in a 7 

randomized complete block design with three replications at 6.9 m2 plots (1.5 m × 4.6 m). The soil of the location is mostly sandy 8 

loam. Round-up® herbicide was applied 15 days before planting to control different narrow leaf weeds. Buctril® and Harmony® Extra 9 

were applied at 4 and 6 weeks after planting to control broad-leaf weeds. Prosaro® fungicide was applied three times (at 10, 13, and 15 10 

weeks) to control foliar diseases such as leaf and stripe rust and Septoria leaf and glume blotch. NPK were applied at the rate of 5-10-11 

15 kg ha-1 plus sulphur and micronutrients at the day of planting. Additionally, 36 kg N ha-1 was applied as top dress two times 12 

through irrigation during January and February. Irrigation was applied throughout the cropping cycle by using a central pivot 13 

irrigation system to avoid water stress. The experiment was machine harvested in the first week of June 2015. Days to anthesis were 14 

recorded as days from emergence at which 50% of plants in a plot flowered. Days to maturity were calculated as emergence at which 15 

50% of peduncles turned yellow. A machine harvested sample from freshly harvested grains was collected and oven dried for 48 h, 16 

and dry weights were measured. The fresh and dry weight samples were used to adjust moisture percent and final yield. Grain filling 17 

rate was calculated as yield divided by the difference of days to maturity to days to anthesis. 18 

The data on the same genotypes were collected from ten other locations, including Griffin (33.3° N, 84.3° W, 298 m elevation) and 19 

Plains (32.1° N, 84.4° W, 755 m elevation) in Georgia; Quincy (30.6° N, 84.6° W, 63 m elevation) in Florida; Warsaw (38.0° N, 76.8° 20 

W, 40 m elevation) and Blacksburg (37.2° N, 80.4° W, 633 m elevation) in Virginia; Winnsboro (32.1° N, 91.7° W, 22 m elevation) in 21 
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Louisiana; Knoxville (36.0° N, 84.2° W, 270 m elevation) in Tennessee; Farmersville (33.1° N, 96.2° W, 199 m elevation) in Texas; 1 

and Lexington (38.0° N, 84.5° W, 298 m elevation) in Kentucky. In general, soils of these locations were heavier (more clay) than 2 

Citra, Florida. Fertilizers were applied based on soil testing in those locations. Fall and spring applications of fertilizers were 3 

practiced. Chemicals were applied to control narrow and broad leaf weeds. The plots were machine harvested at maturity. 4 

 5 

CIMMYT experiment 6 

The fourth data set was the International Heat Stress Genotype Experiment (IHSGE) carried out by CIMMYT that included six 7 

temperature environments (Reynolds et al., 1994). The IHSGE was a 4-year collaboration between CIMMYT and key national 8 

agricultural research system partners to identify important physiological traits that have value as predictors of yield at high 9 

temperatures (Reynolds et al., 1994). Experimental locations were selected based on a classification of temperature and humidity 10 

during the wheat growing cycle. “Hot” and “very hot” locations were defined as having mean temperatures above 17.5 and 22.5°C, 11 

respectively, during the coolest month. “Dry” and “humid” locations were defined as having mean VPD above and below 1.0 kPa, 12 

respectively. The present study used data from four of the original 12 locations (i.e., two growing seasons in two Mexico locations, 13 

and one growing season in two locations in Egypt and Sudan) to represent a range of temperatures. Of the sixteen genotypes originally 14 

included in the experiment, two were selected for the present study (cv. Bacanora 88 as the modern cultivar and cv. Debeira as the 15 

standard cultivar). Variables measured in the experiment included days to 50% anthesis, days to physiological maturity, final grain 16 

yield. All experiments were well watered and fertilized with temperature being the most important variable. 17 

 18 

  19 
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Statistical analysis of model performance 1 

Measured (𝑦𝑖) and simulated (𝑦�̂�) grain yield, grain protein yield, and grain protein concentration were compared using the mean squared 2 

error (MSE): 3 

 𝑅MSE = √
1

𝑛
∑ (𝑦𝑖 − 𝑦�̂�)2𝑛

𝑖=1  (1) 4 

The root mean squared relative error (RMSRE) was also calculated as an error metric scaled to the unit of the measurement as: 5 

 RMSRE = 100 × √1

𝑛
∑ (

𝑦𝑖−𝑦�̂�

𝑦𝑖
)

2
𝑛
𝑖=1   (2) 6 

To assess the model skill the Nash–Sutcliffe modeling efficiency (EF;  (Nash &  Sutcliffe, 1970)) was calculated: 7 

 EF = 1 −
∑ (𝑦𝑖−𝑦�̂�)2𝑁

𝑖=1

∑ (𝑦𝑖−𝑦)2𝑁
𝑖=1

= 1 −
MSE

MSE𝑦
  (3) 8 

where 𝑦 is the average over the 𝑦𝑖 and MSE𝑦 is the MSE for the model that uses 𝑦 as an estimator. EF is a skill measure that compares 9 

model MSE with the MSE of using the average of measured values as an estimator.  10 

Results are given in Table S4.  11 

12 
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Table S4. Model error and skill for grain yield, grain protein yield, and grain protein concentration for the INRA and the Australian FACE 1 

experiments for the median of the 32 (grain yield) or 18 (grain protein) wheat model ensembles. RMSE, root mean squared error; RMSRE, root 2 

mean squared relative error; EF, modeling efficiency. The values in parenthesis were calculated when also including the treatments used for 3 

model calibration. 4 

Experiment Grain dry mass yield  Grain N yield  Grain protein concentration 

 RMSE 

(t ha-1) 

RMSRE 

(%) 

EF 

(-) 

 RMSE 

(kg N ha-1) 

RMSRE 

(%) 

EF 

(-) 

 RMSE 

(% of grain yield) 

RMSRE 

(%) 

EF 

(-) 

INRA 0.37 

(0.42) 

5.36 

(6.09) 

0.82 

(0.70) 

 12.43 

(14.52) 

8.04 

(9.36) 

-0.08 

(-0.08) 

 0.82 

(0.91) 

7.73 

(8.61) 

0.55 

(0.41) 

AGFACE 1.88 

(0.66) 

44.04 

(44.04) 

0.51 

(0.51) 

 7.18 

(16.80) 

25.59 

(25.59) 

0.51 

(0.51) 

 3.23 

(3.23) 

17.77 

(17.77) 

-3.05 

(-3.05) 

 5 

 6 

Global impact assessment 7 

Model inputs for global simulations  8 

To carry out the global impact assessment and exclusively focus on climate change, region-specific cultivars were used in all 60 9 

locations. The cultivars for locations 31 to 60 were partly based on the cultivars for locations 1 to 30. Observed local mean sowing, 10 

anthesis, and maturity dates were supplied to modelers with qualitative information on vernalization requirements and photoperiod 11 

sensitivity for each cultivar (Supplementary Fig. S5-6). Modelers were asked to sow at the supplied sowing dates and calibrate their 12 

cultivar parameters against the observed anthesis and maturity dates by considering the qualitative information on vernalization 13 

requirements and photoperiod sensitivity.  14 
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For locations 1 to 30 sowing dates were fixed at a specific date. For locations 31 to 60, sowing windows were defined and a sowing 1 

rule was used. The sowing window was based on sowing dates reported in literature. For locations 41, 43, 46, 53, 54, and 59, sowing 2 

dates were not reported in literature and estimates from a global cropping calendar were used (Portmann et al., 2010). The cropping 3 

calendar provided a month (the 15th of the month was used) in which wheat is usually sown in the region of the location. The start of 4 

the sowing window was the reported sowing date and the end of the sowing window was set two months later. Sowing was triggered 5 

in the simulations on the day after cumulative rainfall reached or exceeds 10 mm over a 5-day period during the predefined sowing 6 

window. Rainfall from up to 5 days before the start of the sowing window was considered. If these criteria were not met by the end of 7 

the sowing window, wheat was sown on the last day of the sowing window. Sowing dates were left unchanged for future scenarios.  8 

For locations 35, 39, 47, 49, and 55 to 57 (Supplementary Table S5), anthesis dates were reported in the literature. For the remaining 9 

sites, anthesis dates were estimated with the APSIM-Wheat model. Maturity dates were estimated from a cropping calendar for sites 10 

31 to 32, 37 to 38, 41 to 46, 49 to 54, and 58 to 59 (Supplementary Table S5) where no information from literature was available. For 11 

locations 31 to 60, observed grain yields from the literature (Supplementary Table S5) were provided to modelers with the aim to set 12 

up wheat models to have similar yield levels, as well as similar anthesis and maturity dates. No yields were reported for sites 49 and 13 

56 (Supplementary Table S5), so APSIM-Wheat yields were estimated and used as a guide.  14 

Locations 1 to 30 (no water or N limitations; Supplementary Table S5) were simulated using the same soil information from 15 

Maricopa, USA. Soil information for locations 31 to 60 (Supplementary Table S5) were obtained from a global soil database (Romero 16 

et al., 2012). The soil closest to a location was used, but for locations 39 and 59 (Supplementary Table S5), soil carbon was decreased 17 

after consulting local experts.  18 

Initial soil nitrogen was set to 25 kg N ha-1 NO3-N and 5 kg N ha-1 NH4-N per 100 cm soil depth and reset each year for locations 31 19 

to 60. Initial soil water for spring wheat sown after winter at locations 31 to 60 was set to 100 mm PAW, starting from 10 cm depth 20 

until 100 mm was filled in between LL and DUL. The first 10 cm were kept at LL (see soil profiles) and reset each year. If wheat was 21 
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sown after summer, initial soil water was set to 50 mm PAW, starting from 10 cm depth until 50 mm was filled in between LL and 1 

DUL. The first 10 cm were kept at LL (see soil profiles) and reset each year. 2 

For locations 31 to 60, fertilizer rates were determined from (Gbegbelegbe et al., 2017) except for site 59 (Ethiopia) where N fertilizer 3 

was set to 60 kg N ha-1. Fertilizer rates were set low (20 to 50 kg N ha-1) at locations 31 to 32, 48, 51, 53, 60; medium (60 kg N ha-1) at 4 

locations 33 to 43, 45 to 47, 49 to 50, 52, 54, 57 to 59; and relatively high (100 to 120 kg N ha-1) at locations 44, 55 to 56. All fertilizer 5 

was applied at sowing. 6 

 7 

Table S5. Location, name and characteristics of the cultivars, sowing date (locations 1-30) or sowing window (locations (31-60), and mean anthesis and physiological maturity 

date for the 30 locations (1-30) from high rainfall or irrigated wheat regions and thirty locations from low rainfall (low input) regions (31-60) of the world used in this study. 

Location 

number Country Location 

Latitude / 

longitude 

(decimal) 

Elevation 

(m a.s.l) 

Irrigation 

(Y/N) 

Cultivar 

Sowing date or 

window 

Mean 

50%-

anthesis 

date 

Mean 

maturity 

date 

Referenc

e used for 

choosing 

anthesis 

date Name G
ro

w
th

 h
a

b
it

 a
 

V
er

n
a

li
za

ti
o
n

 r
eq

u
ir

em
en

t 
b
 

P
h

o
to

p
er

io
d

 s
en

si
ti

v
it

y
 b

 

01 USA, NE Maricopa 33.06 / -112.05 358 Y Yecora Rojo S 2 1 25 Dec. 5 Apr. 15 May - 

02 Mexico Obregon 27.33 / -109.9 41 Y Tacupeto C2001 S 2 2 1 Dec. 15 Feb. 30 Apr. - 

03 Mexico Toluca 19.40 / -99.68 2,667 Y Tacupeto C2001 S 2 2 10 May 5 Aug. 20 Sep. - 

04 Brazil Londrina -23.31 / -51.13 610 Y Atilla S 3 3 20 Apr. 10 Jul. 1 Sep. - 

05 Egypt Aswan 24.10 / 32.90 193 Y Seri M 82 S 3 2 20 Nov. 20 Mar. 30 Apr. - 

06 The Sudan Wad Medani 14.40 / 33.50 413 Y Debeira S 3 2 20 Nov. 25 Jan. 25 Feb. - 

07 India Dharwar 15.43 / 75.12 751 Y Debeira S 3 2 25 Oct. 15 Jan. 25 Feb. - 

08 Bangladesh Dinajpur 25.65 / 88.68 40 Y Kanchan S 2 2 1 Dec. 15 Feb. 15 Mar. - 

09 The Netherland Wageningen 51.97 / 5.63  12 N Aminda W 6 6 5 Nov. 25 Jun. 5 Aug. - 

10 Argentina Balcarce  -37.75 / -58.3  122 N Oasis W 5 5 5 Aug. 25 Nov. 25 Dec. - 

11 India Ludhiana 30.90 / 75.85 244 Y HD 2687 S 1 1 15 Nov. 5 Feb. 5 Apr. - 
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12 India Indore 22.72 / 75.86 58 Y HI 1544 S 0 1 25 Oct. 25 Jan. 25 Mar. - 

13 USA, WI Madison 43.03 / -89.4 267 N Brigadier W 6 6 15 Sep. 15 Jun. 30 Jul. - 

14 USA, KS Manhattan 39.14 / -96.63 316 N Fuller W 4 4 1 Oct. 15 May 01 Jul. - 

15 UK Rothamsted 51.82 / -0.37  128 N Avalon W 3 3 15 Oct. 10 Jun. 20 Aug. - 

16 France Estrées-Mons 49.88 / 3.00 87 N Bermude W 6 6 5 Oct. 31 May 15 Jul. - 

17 France Orleans 47.83 / 1.91  116 N Apache W 5 4 20 Oct. 25 May 7 Jul. - 

18 Germany Schleswig 54.53 / 9.55 13 N Dekan W 5 2 25 Sep. 15 Jun. 25 Jul. - 

19 China Nanjing 32.03 / 118.48 13 N NM13 W 4 4 5 Oct. 5 May 5 Jun. - 

20 China Luancheng 37.53 / 114.41 54 Y SM15 W 6 4 5 Oct. 5 May 5 Jun. - 

21 China Harbin 45.45 / 126.46 118 Y LM26 S 1 5 5 Apr. 15 Jun. 25 Jul. - 

22 Australia Kojonup -33.84 / 117.15 324 N Wyallkatchem S 2 4 15 May 5 Oct. 25 Nov. - 

23 Australia Griffith -34.17 / 146.03 193 Y Avocet S 2 4 15 Jun. 15 Oct. 25 Nov. - 

24 Iran Karaj 35.92 / 50.90 1,312 Y Pishtaz S 2 2 1 Nov. 1 May 20 Jun. - 

25 Pakistan Faisalabad 31.42 / 73.12 192 Y Faisalabad-2008 S 0 2 15 Nov. 5 Mar. 5 Apr. - 

26 Kazakhstan Karagandy 50.17 / 72.74 356 Y Steklov-24 S 2 4 20 May 1 Aug. 15 Sep. - 

27 Russia Krasnodar 45.02 / 38.95 30 Y Brigadier W 6 6 15 Sep. 20 May 10 Jul. - 

28 Ukraine Poltava 49.37 / 33.17 161 Y Brigadier W 6 6 15 Sep. 20 May 15 Jul. - 

29 Turkey Izmir 38.60 / 27.06 14 Y Basri Bey S 4 4 15 Nov. 1 May 1 Jun. - 

30 Canada Lethbridge 49.70 / -112.83 904 Y AC Radiant W 6 6 10 Sept. 10 Jun. 25 July.  

31 Paraguay Itapúa -27.33 / -55.88 216 N Based on Atilla S 3 3 25 May – 25 Jul. - d 15 Oct. e (Ramirez-

Rodrigues 

et al., 

2014) 

32 Argentina Santa Rosa −36.37 / -64.17 177 N Based on Avocet S 2 4 5 Jun. – 5 Aug. - d 15 Dec. e (Asseng et 

al., 2013) 

33 USA, GA Watkinsville 34.03 / -83.41 220 N Based on Brigadier W 6 6 25 Nov. – 25 Jan. - d 22 Jun. (Franzlue

bbers &  

Stuedema

nn, 2014) 

34 USA, WA Lind 47.00 / -118.56 522 N Based on AC Radient W 4 4 28 Aug. – 28 Oct. - d 31 Jul. (Al-Mulla 

et al., 

2009, 

Donaldso

n et al., 

2001, 

Schillinge

r et al., 

2008) 

35 Canada Swift Current 50.28 / -107.78 10 N Based on Steklov-24 S 2 4 18 May. – 18 Jul. 16 Jul. 28 Aug. (Hu et al., 

2015) 
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36 Canada Josephburg 53.7 / -113.06 631 N Based on Steklov-24 S 2 4 15 May. – 15 Jul. - d 28 Aug. (Izaurrald

e et al., 

1998) 

37 Spain Ventas Huelma 37.16 / -3.83 848 N Based on Basri Bey S 4 4 18 Dec. – 18 Feb. - d 15 Jun. e (Royo et 

al., 2006) 

38 Italy Policoro 40.2 / 16.66 14 N Based on Basri Bey S 4 4 17 Nov. – 17 Jan. - d 15 May e (Steduto 

et al., 

1995) 

39 Italy Libertinia 37.5 / 14.58 267 N Based on Basri Bey S 4 4 26 Nov. – 26 Jan. 4 May 30 May (Pecetti &  

Hollingto

n, 1997) 

40 Greece Thessaloniki 41.08 / 22.15 36 N Based on Basri Bey S 4 4 15 Nov. – 15 Jan. - d 22 Jun. (Lithourgi

dis et al., 

2006) 

41 Hungary Martonvásár 47.35 / 18.81 113 N Based on Apache S 5 4 15 Nov. – 15 Jan. c - d 15 Jun. e (Berzseny

i et al., 

2000) 

42 Romania Alexandria 43.98 / 25.35 73 N Based on Brigadier W 6 6 7 Oct. – 7 Dec. - d 15 Aug. e (Cuculean

u et al., 

1999) 

43 Bulgaria Sadovo 42.13 / 24.93 154 N Based on Brigadier W 6 6 15 Oct. – 15 Dec. c - d 15 Jul. e (Islam, 

1991) 

44 Finland Jokioinen 60.80 / 23.48 107 N Based on Steklov-24 S 2 2 1 May – 1 Jul. - d 15 Aug. e (Rötter et 

al., 2012) 

45 Russia Yershov 51.36 / 48.26 102 N Based on Steklov-24 S 2 4 6 May – 6 Jul. - d 15 Sep. e (Pavlova 

et al., 

2014) 

46 Kazakhstan Altbasar 52.33 / 68.58 289 N Based on Steklov-24 S 2 4 15 Mar. – 15 May c - d 15 Sep. e (Pavlova 

et al., 

2014) 

47 Uzbekistan Samarkand 39.70 / 66.98 742 N Based on SM15 W 6 4 5 Nov. –  5 Jan. 7 May 5 Jul. (FAO, 

2010) 

48 Morocco Sidi El Aydi / 

Jemaa Riah  

33.07 / -7.00 648 N Based on Yecora S 1 1 5 Nov. – 5 Jan. - d 1 Jun. (Heng et 

al., 2007) 

49 Tunisia Nabeul / Tunis 36.75 / 10.75 167 N Based on Pishtaz S 2 2 1 Dec. – 1 Feb. 29 Mar. 15 Jun. e (Latiri et 

al., 2010) 

50 Syria Tel Hadya / 

Aleppo 

36.01 / 36.56 263 N Based on Pishtaz S 2 2 20 Nov. – 20 Jan. - d 15 Jun. e (Sommer 

et al., 

2012) 

51 Iran Maragheh 37.38 / 46.23 1,472 N Based on SM15 W 6 4 13 Oct. – 13 Dec. - d 15 Jun. e (Tavakkol

i &  

Oweis, 

2004) 



20 
 

52 Turkey Ankara 39.92 / 32.85 895 N Based on Fuller W 4 4 1 Sep. – 1 Nov - d 15 Jul. e (Ilbeyi et 

al., 2006) 

53 

 

Iran Ghoochan / 

Quchan 

37.66 / 58.50 1,555 N Based on Pishtaz S 2 2 15 Oct.  – 15 Dec. c - d 15 Jun. e (Bannaya

n et al., 

2010) 

54 Pakistan Urmar 34.00 / 71.55 340 N Based on Yecora S 1 1 15 Nov.  – 15 Jan. c - d 15 May (Iqbal et 

al., 2005) 

55 China Dingxi 35.46 / 104.73 2,009 N Based on Pishtaz S 2 2 15 Mar. – 15 May. 15 Jun. 2 Aug. (Huang et 

al., 2008) 

56 China Xuchang 34.01 / 113.51 110 N Based on Wenmai W 4 4 10 Oct.  – 10 Dec. 25 Apr. 1 Jun. f 

57 Australia Merredin -31.50 / 118.2 3000 N Based on Wyalkatchem S 2 4 15 May – 25 Jul. 5 Oct. 25 Nov. (Asseng et 

al., 1998) 

58 Australia Rupanyup / 

Wimmera 

-37.00 / 143.00 219 N Based on Avocet S 2 4 1 May –  1 Jul. - d 15 Nov. e (van Rees 

et al., 

2014) 

59 Ethiopia Adi Gudom 13.25 / 39.51 2,090 N Based on Debeira S 2 4 15 Jun.  – 15 Aug. c - d 15 Dec. e (Araya et 

al., 2015) 

60 South Africa Glen / 

Bloemfontein 

-28.95 / 26.33 1,290 N Based on Wyalkatchem S 2 4 15 May – 15 Jul. - d 15 Nov. (Singels 

&  De 

Jager, 

1991) 
a S, spring type; W, winter type. 

b Vernalization requirement and photoperiod sensitivity of the cultivars range from nil (0) to high (6). 

c Sowing date estimated using global cropping calendar. 
d See Figure S8. 
e Maturity date estimated using global cropping calendar. 

f Yan Zhu, personal communication, August 4, 2015. 

1 
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 1 
 2 

Fig. S1. Soil profile hydrological parameters used for locations 1 to 45. Changes in volumetric water content (VWC 3 
in v/v) with soil depth for characteristics water contents. The red line is the drained lower limit (-15 bar); the blue 4 
line is drained upper limit (field capacity); and the black line is saturated water content. The lower limit of crop 5 
water extraction was assumed to be the same as -15 bar lower limit. 6 

7 
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 1 

 2 

Fig. S2. Soil profile hydrological parameters used for locations 46 to 60. Changes in volumetric water content 3 
(VWC in v/v) with soil depth for characteristics water contents. The red line is drained lower limit (-15 bar); the 4 
blue line is drained upper limit; and the black line is saturated water content. The lower limit of crop water 5 
extraction was assumed to be the same as -15 bar lower limit.  6 
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 1 

 2 
 3 

Fig. S3. Soil Organic Carbon (SOC) in different soil layers for locations 1 to 45.  4 
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 1 
 2 

Fig. S4. Soil Organic Carbon (SOC) in different soil layers for locations 56 to 60. 3 

 4 
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 1 

Fig. S5. Observed and simulated anthesis dates for location 31 to 60. Red dots are reported dates and black crosses 2 
are dates estimated by APSIM-Wheat model for years 1981-2010. 3 

 4 

 5 

 6 

 7 
 8 

Fig. S6. Observed and simulated grain yields for locations 31 to 60. Red dots and lines show reported yield and 9 
yield ranges over several years, when available. Black crosses show grain yields simulated with the APSIM-Wheat 10 
model for locations 49 and 56 (1981-2010) where no observed yields were reported. 11 

  12 



26 
 

Future climate projections 1 

 2 

 3 

Fig. S7. Mean temperature and precipitation changes for the five GCMs used in this study. Mean annual RCP8.5 4 
mid-century (2040-2069) temperature (left) and precipitation (right) changes compared to historical baseline (1980-5 
2009) for the five selected GCMs. The locations of the 30 well-watered and 30 water-limited sites are noted as 6 
circles and diamonds, respectively. 7 
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 1 

Fig. S8. Critical growing season climate for 60 wheat locations. Mean total precipitation versus mean temperature 2 
during the growing season for each the 30 high-rainfall or irrigated locations (well-watered) and 30 low rainfall 3 
(water-limited) for 1980-2010 (Baseline) and 2040-2069 (Future). Data for the future are for five GCM scenarios for 4 
RCP8.5. 5 

 6 

  7 
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Simulated adaptation 1 

In 30 of the 32 models, anthesis date was delayed by increasing the thermal time requirement 2 

between emergence and anthesis, and for six models (AE, AF, DC, DN, OL, and WG) also by 3 

increasing the cold requirement and/or the photoperiod sensitivity. In two models (AE and DN) 4 

anthesis date was delayed without changing the thermal time requirement.  5 

 6 

For the adaptation of grain filling trait, the 32 models were divided into five group according to 7 

how models incorporated the adaptation to increase grain filling rate.  8 

Group 1: 17 models increased rate of grain filling (or HI change): AE, AF, AW, DN, EW, GL, 9 

IC, LI, MC, NC, NP, NS, OL, SA, MC, SS, ST, and WG. 10 

Group 2: Five models with increased potential grain size (or final HI): CS, DC, DR, EI, and LP. 11 

Group 3: Two models with increased fraction of vegetative biomass remobilization: L5 and SP. 12 

Group 4: One model with decreased grain filling duration: AQ. 13 

Group 5: Seven models with no parameter change to increase the rate of grain filling: DS, HE, 14 

MO, NG, S2, SQ, and WO. 15 

The distributions of simulated grain yield with and without genetic adaptation under climate 16 

change the climate change scenarios for all 32 crop models and for the five groups were similar 17 

(Supplementary Fig. S9). 18 
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Table S6. Crop model parameters changed for adaptation to climate change. For each model the name, unit, definition, value of the parameters modified to delay anthesis date by 

2 weeks and increase the rate of grain filling by 20% to adapt to climate change. 

Model name Trait 

Parameter  Value a 

Name Unit Definition  Without adaptation With adaptation 

APSIM-E anthesis Vern_sens - Vernalization sensitivity  1.61 [0.01-4.2] 2.81 [0.2-5] 

anthesis photo_sens - Photoperiod sensitivity  1.62 [0.01-4.5] 2.98 [0.2-5] 

grain filling potential_grain_filling_rate mg/grain/d Potential rate of grain filling  1.94 [1.5-3.0] 2.33 [1.8-3.6] 

AFRCWHEAT2 b anthesis TT-EmAn ºCd Thermal time between emergence and 

anthesis 

 864 [531-1239] 1049 [794-1239] 

anthesis Psat h Saturation photoperiod  14.4 [6-20] 15.2 [6-20] 

grain filling GMAXGR mg/grain/°Cd Potential grain filling rate  0.074 0.089 

AQUACROP anthesis GDDays: from sowing to 

anthesis 

°Cd Thermal time between sowing and anthesis  1428 [610-2100] 1673 [820-2400] 

grain filling GDDays: building-up of 

Harvest Index during yield 

formation 

°Cd Thermal time for the building-up of 

harvest index during yield formation 

 929 [508-1478] 689 [280-1200] 

APSIM-Wheat anthesis tt_end_juv °Cd Thermal time between end juvenile and 

floral initiation 

 380 [150-400] 462 [218-512] 

anthesis tt_flor_init °Cd Thermal time between floral initiation and 

anthesis 

 534 [250-555] 651 [363-710] 

grain filling potential_grain_filling_rate mg/grain/d Potential rate of grain filling  2.03 2.43 

CropSyst anthesis Tteman °Cd Thermal time between crop emergence and 

anthesis 

 1581 [671-3318] 1327 [455-3020] 

grain filling HI - Potential harvest Index  0.48 0.58 

DSSAT-CERES-Wheat anthesis P1 °Cd Thermal time between end juvenile and 

floral initiation 

 277 [140-460] 392 [250-500] 

anthesis P1V  Vday Optimum number of vernalizing days  30.3 [10-60] 31.5 [10-60] 

anthesis P1D %/10h Photoperiod response  90 [10-200] 91 [10-200] 

grain filling G2 mg/grain Standard grain size under optimum 

conditions 

 40.3 [12-80] 48.3 [14-96] 

DSSAT-Nwheat anthesis VSEN °Cd Vernalisation sensitivity  2.33 [1-5] 2.66 [1-5] 

anthesis PPSEN °Cd Photoperiod sensitivity  2.45 [1-5] 4.11 [3-5] 

grain filling MXFIL mg/grain/d Potential rate of grain filling  1.81 [1.4-2.5] 2.17 [1.68-3] 
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DSSAT-CROPSIM anthesis P1 °Cd Thermal time from end juvenile to floral 

initiation 

 434 [350-500] 626 [450-750] 

grain filling GWTS mg/grain Standard grain size under optimum 

conditions 

 37 [15-49] 44.4 [18-59] 

DAISY anthesis DSRate1 DS/d Development rate in the vegetative stage  0.029 [0.012-0.053] 0.023 [0.01-0.038] 

anthesis DSeff - Development stage factor for assimilate 

production 

 1 1.2 

EPIC-I anthesis PHU °C Thermal time between sowing and maturity  1688 [1000-2600] 2004 [1200-2800] 

grain filling HI - Potential harvest index  0.45 0.54 

EPIC-Wheat anthesis DLAI - Fraction of growing season when LAI 

declines 

 0.60 0.74 [0.69-0.84] 

grain filling SCRP3 - Development of harvest index relative to 

growing season 

 50.1 58.1 

GLAM anthesis GCWSPLFL °Cd Thermal time between sowing and anthesis  1168 [755-2080] 1419 [987-2412] 

grain filling DHDT - Rate of change in harvest index  0.00797 [0.0035-0.01] 0.00957 [0.0042-0.012] 

HERMES anthesis Tsum3 °Cd Thermal time between double ridge and 

heading 

 715 [170-1100] 775 [200-1155] 

anthesis Tsum4 °Cd Thermal time between heading and anthesis  187 [120-270] 348 [230-400] 

INFOCROP anthesis TTVG °Cd Thermal time between emergence and 

anthesis 

 822 [450-1780] 1012 [625-1780] 

grain filling GFRVAR mg/grain/d Potential rate of grain filling  1.32 [0.9-2.4] 1.58 [1.08-2.4] 

LINTUL4 anthesis TSUM1 °Cd Thermal time between emergence and 

anthesis 

 1195 [490-2170] 1455 [710-2510] 

grain filling PGRIG mg/grain/d Potential rate of grain filling  2.0 2.4 

SIMPLACE<Lintul-5, 

SlimWater3,FAO-

56,CanopyT,HeatStressHo

urly> 

anthesis vTSUM1 °Cd Thermal time between emergence and 

anthesis 

 915 [460-1802] 1119 [633-2079] 

grain filling vFRTDM - Proportion of vegetative biomass 

translocated to grains under optimum 

conditions 

 0.074 [0.05-0.09] 0.089 [0.06-0.108] 

LPJmL anthesis phu °Cd Thermal time between emergence and 

maturity 

 1876 [1250-2920] 2151 [1395-3300] 

grain filling hiopt - Potential harvest index  0.5 0.6 
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MCWLA-Wheat anthesis rmaxv2 - Maximum development rate between 

terminal spikelet initiation and anthesis 

 0.0435 [0.022-0.0964] 0.0298 [0.0172-0.0554] 

anthesis rmaxr - Maximum development rate between 

anthesis and maturity 

 0.0334 [0.0143-0.1182] 0.0401 [0.0172-0.1418] 

grain filling Hidt - Rate of change in harvest index  0.4007 [0.3-0.5] 0.4808 [0.36-0.6] 

MONICA anthesis Tsum3 °Cd Thermal time between double ridge and 

begin anthesis 

 481 [210-900] 538 [220-1020] 

anthesis Tsum4 °Cd Thermal time between begin anthesis and 

begin grain filling 

 172 [120-200] 386 [320-400] 

Expert-N-CERES anthesis PHINT °Cd Phyllochron  112 [71-140] 122 [81-150] 

anthesis P1 °Cd Thermal time between emergence and 

terminal spikelet 

 228 [100-430] 314 [190-525] 

grain filling G2 mg/grain/d Potential rate of grain filling  3 [2.9-3.5] 3.6 [3.4-4.2] 

Expert-N-GECROS c anthesis MTDV d Minimum thermal days for vegetative phase  54 [22-98] 64 [29-99] 

Expert-N-SPASS anthesis PDD1 d Phenological development days between 

emergence and anthesis 

 39 [31-51] 48 [38-61] 

grain filling G2 mg/grain/d Potential rate of grain filling  2.5 [2.5-3.5] 3.1 [3-4.2] 

Expert-N-SUCROS anthesis Tsum_1 °Cd Thermal time between emergence and 

anthesis 

 1206 [700-2100] 1428 [900-2420] 

grain filling G2 mg/grain/d Potential rate of grain filling  2.5 [2.5-3.5] 3.1 [3-4.2] 

OLEARY anthesis ANTHDL °Cdh Photothermal time between sowing and 

anthesis 

 11700 [2500-22278] 14446 [3625-25620] 

anthesis BOOTDL °Cdh Photothermal time between stem extension 

and booting 

 5087 [2500-6500] 5173 [2500-6500] 

grain filling GRMAX mg/grain/d Potential rate of grain filling  2.56 [2-2.9] 3.07 [2.4-3.48] 

Sirius anthesis PHYLL °Cd/leaf Phyllochron  83 [70-126] 105 [70-149] 

SALUS anthesis Phase 3 Phyllochrone Phyllochronic duration of phase 3  4.5 6.5 

grain filling krPGR mg/grain/d Potential rate of grain filling  2 2.4 

SIMPLACE<Lintul-

2,CC,Heat,CanopyT,Re-

Translocation> 

anthesis AirTemperatureSumAnthesis °Cd Thermal time between emergence and 

anthesis 

 692 [400-2000] 781 [423-2302] 

grain filling FRTDM - Proportion of vegetative biomass 

translocated to grains under optimum 

conditions 

 0.15 0.18 

SiriusQuality anthesis P °Cd/leaf Phyllochron  113 [80-160] 143 [95-190] 
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SSM-Wheat anthesis bdSELBOT d Biological days between stem elongation 

and booting 

 10.9 [10.9-10.9] 24.2 [12.1-36.7] 

grain filling PDHI 1/d Rate of change in harvest index  0.014 [0.014-0.014] 0.0168 [0.0168-0.0168] 

STICS anthesis STLEVDRP °Cd Thermal time between emergence and 

anthesis 

 906 [505-1745] 1125 [715-2050] 

grain filling VITIRCARB 1/d Rate of change in harvest index  0.0081 0.00972 

WHEATGROW d anthesis TS - Thermal sensitivity  0.85 [0.58-1.81] 0.79 [0.5-1.81] 

anthesis PS - Photoperiod sensitivity  0.000263 [0.0001-0.00054] 0.000268 [0.0001-0.00075] 

anthesis IE - Intrinsic earliness  0.96 [0.58-1.2] 1.38 [0.2-1.95] 

grain filling BFF - Basic filling factor  0.78 [0.45-1.2] 1.11 [0.65-1.75] 

WOFOST anthesis TSUM1 °Cd Thermal time between emergence and 

anthesis 

 1393 [520-2120] 1643 [740-2500] 

a For genotypic parameters the mean, minimum and maximum values (between squared brackets) for the 60 locations are given. 
b In order to reach maturity thermal time between anthesis and maturity was increased by 33% at one site (#44). 
c In order to delay the anthesis date by two weeks the base temperatures and/or the curvature of the temperature response function for phenology were also changed at three sites (#5, 22 and 25). 
d In order to reach maturity the grain filling heat tolerance sensitivity parameter (HTS) was also increased by 17 to 80% at three sites (#10, 26, and 45). 

1 
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 1 

 2 

Fig. S9. Comparison of simulated absolute grain yield and genetic adaptation of grain yield for groups of crop 3 
models with different trait to increase grain filling rate. (A) Simulated yield distributions without adaptation, (B) 4 
simulated yield distributions with adaptation, and (C) distributions of simulated trait effects across the 60 global 5 
locations. All simulations are for 2040-2069 (RCP8.5, five GCMs). In each box plot, end of vertical lines represent 6 
from top to bottom, the 10th, and 90th percentiles, horizontal lines represent from top to bottom, the 25th, 50th, and 7 
75th percentiles of the simulations. 8 

 9 
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 1 

Fig. S10. Comparison of the distributions of simulated annual wheat grain yields from the 32-crop model ensemble 2 
median and the 18-crop model ensemble median used in grain protein simulations. (A) Baseline (grey: 18 models, 3 
black: 32 models); (B) climate change scenarios (light orange: 18 models, dark orange: 32 models); and (C) climate 4 
change scenario with genetic adaptation (light cyan: 18 models, dark cyan: 32 models) at rainfed (dash lines) and 5 
high rainfall or irrigated (solid lines) locations. 6 

 7 

 8 

Fig. S11. Comparison of the distributions of simulated 30-year mean wheat yield impacts from the 32-crop model 9 
ensemble median and the 18-crop model ensemble median used in grain protein simulations. (A) Baseline (grey: 18 10 
models, black: 32 models); (B) Future (light orange: 18 models, dark orange: 32 models); and (C) climate change 11 
scenario with genetic adaptation (light cyan: 18 models, dark cyan: 32 models) at rainfed (dash lines) and high 12 
rainfall or irrigated (solid lines) locations. 13 

  14 
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 1 

Table S7. Comparison of the distributions of simulated yield impacts of climate change without 

(Climate impacts) and with (Climate impacts + traits) genetic adaptation, and of genetic 

adaptation (Trait effects) for the 32 multi-model ensemble and the subset of 18 models used in 

the protein analysis. Impacts were calculated for 2040-2069 (RCP85, five GCMs) at the 30 low-

rainfall or irrigated locations (Locations 1 to 30) and at the 30 low rainfall/input locations 

(Locations 31 to 60). Data are P-value from a Kolmogorov–Smirnov test. 

Impacts P-value a 

High rainfall or irrigated 

locations  

Low rainfall locations  

Climate impacts 0.07 0.07 

Climate impacts + traits < 0.01 < 0.01 

Trait effects 0.81 0.24 
a P < 0.01 indicates that the two distributions were significantly different. 

 2 

  3 
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Supplementary additional supporting results 1 

 2 

 3 
Fig. S12. Relative uncertainty (25th to 75th percentile) in estimating change in (A and B) grain yield and (C and D) 4 
grain protein yield, (A and C) with currently grown cultivars and (B and D) with adapted genotypes for crop models 5 
(triangle), GCMs (circles) and 25th to 75th percentile uncertainty range (grey shaded area) for crop models and GCM 6 
combined, based on a simulated multi-model ensemble projection under climate change of global wheat grain and 7 
protein yield for 2036-2065 under RCP8.5 compared with the 1981-2010 baseline across 32 models (or 18 for 8 
protein yield estimates) and five GCMs and the average over 30 years of yields using region-specific soils, cultivars 9 
and crop management. Locations are connected by line for uncertainty range (gray) to improve readability of this 10 
figure.  11 
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 1 

Fig. S13. Simulated global wheat grain and protein yield impacts from climate change with genotypic adaptation. 2 
Relative (A and B) grain yield and (C and D) grain protein yield impacts from climate change (A and C) without 3 
genetic adaptation and (B and D) with genetic adaptation for 2040-2069 (RCP8.5). Median across 32 crop models 4 
(18 for protein) and five GCMs and mean of 30 years using region-specific soils, cultivars, and crop management. 5 
Estimate of uncertainty (circle size) given as range between 25th and 75th percentiles for crop models and GCMs 6 
together. The larger the symbol, the higher the certainty.  7 
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 1 

Fig. S14. Simulated trait effect for global wheat grain and protein yield. Relative effect of genetic adaptation on (A) 2 
grain yield and (B) grain protein yield for 2040-2069 (RCP8.5). Median across 32 crop models (18 for protein) and 3 
five GCMs and mean of 30 years using region-specific soils, cultivars, and crop management. Estimate of 4 
uncertainty given as range between 25th and 75th percentiles for crop models (circle size) and GCMs (triangle size). 5 
The larger the symbol, the less the uncertainty.  6 

  7 
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 1 

Fig. S15. Simulated global wheat grain and protein yield impacts from climate change with genotypic adaptation. 2 
Absolute (A and B) grain yield and (C and D) grain protein yield impacts from climate change (A and C) without 3 
genetic adaptation and (B and D) with genetic adaptation for 2030-2069 (RCP8.5). Median across 32 crop models 4 
(18 for protein) and five GCMs and mean of 30 years using region-specific soils, cultivars and crop management. 5 
Estimate of uncertainty given as range between 25th and 75th percentiles for crop models (circle size) and GCMs 6 
(triangle size). The larger the symbol, the higher the certainty.   7 
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 1 

Fig. S16. Simulated trait effect for global wheat grain and protein yield. Absolute (A) grain yield and (B) grain 2 
protein trait effect for 2040-2069 (RCP8.5). Median across 32 crop models (18 for protein) and five GCMs and 3 
mean of 30 years using region-specific soils, cultivars, and crop management. Estimate of uncertainty given as range 4 
between 25th and 75th percentiles for crop models (circle size) and GCMs (triangle size). The larger the symbol, the 5 
less the uncertainty.  6 

  7 
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Fig. S17. Simulated global wheat grain protein concentration impacts from climate change with genotypic 2 
adaptation. Absolute grain protein concentration impacts from climate change (A) without genetic adaptation and 3 
(B) with genetic adaptation and (C) absolute traits effects for 2040-2069 (RCP8.5). Median across 18 crop models 4 
and five GCMs and mean of 30 years using region-specific soils, cultivars, and crop management. Estimate of 5 
uncertainty given as range between 25th and 75th percentiles for crop models (circle size) and GCMs (triangle size). 6 
The larger the symbol, the higher the certainty.  7 
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 1 

Fig. S18. Coefficient of variability of simulated wheat grain yields. (A) all 60 locations, (B) the 30 high rainfall or 2 
irrigated locations, and (C) the 30 low rainfall locations based on 32 crop models, five GCMs, and 30 years for 3 
baseline (Base), baseline with genetic adaptation (Base+T), climate change scenarios from 5 GCMs for 2040-2069 4 
(RCP8.5) without genetic adaptation (2050s) and with genetic adaptation (2050s+T). In each box plot, horizontal 5 
lines represent from top to bottom, the 10th, 25th, 50th, 75th, and 90th percentiles of the simulations.  6 
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 1 

Fig. S19. Coefficient of variability of simulated wheat grain protein yields for (A) 60 locations, (B) for the high 2 
rainfall and irrigated locations, and (C) for low rainfall locations, based on 18 crop models, 5 global climate models 3 
(GCMs), 30 years. (A) 60 locations and (B) 30 high rainfall/irrigated locations and (C) 30 low rainfall locations for 4 
baseline (Base), baseline plus traits (Base+T), climate change scenario for 2050s (RCP8.5) without traits (2050s) 5 
and with traits (2050s+T), In each box plot, horizontal lines represent from top to bottom, the 10th, 25th, 50th, 75th, 6 
and 90th percentiles of the simulations.  7 
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 2 

Fig. S20. Simulated wheat grain and protein yield impacts from increasing temperatures. Relative change in (A) 3 
grain yield and (B) for grain protein yield in response to a temperature increase of 2°C (Baseline+2oC) or 4°C 4 
(Baseline+4oC) for the baseline period (1981-2010) under historical CO2 concentration (360 ppm) at the 60 global 5 
locations (locations 1 to 30 are irrigated or high rainfall and locations 31 to 60 are rainfed/low input; see Table S5 6 
for details of the locations). Data are ensemble median for 32 crop models (18 for protein) and mean of 30 years 7 
using region-specific soils, cultivars, and crop management. Locations are connected by line to improve readability 8 
of this figure.   9 
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 1 

 2 

Fig. S21. Simulated wheat grain and protein yield impacts from elevated CO2. Relative response to CO2 (360 vs. 3 
550 ppm) for (A) grain yield and (B) for grain protein yield for the baseline period (1981-2010; Baseline) and for 4 
the baseline period with a temperature increase of 2°C (Baseline+2oC) or 4°C (Baseline+4oC) at the 60 global 5 
locations (locations 1 to 30 are irrigated or high rainfall and locations 31 to 60 are rainfed/low input; see Table S5 6 
for details of locations). Data are ensemble median for 32 crop models (18 for protein) and mean of 30 years using 7 
region-specific soils, cultivars, and crop management. Locations are connected by line to improve readability of this 8 
figure. 9 

 10 
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 2 

Fig. S22. Simulated wheat grain and protein yield impacts with climate change under five global climate models 3 
(GCMs) without genetic adaptation. Relative (A) grain yield and (B) grain protein yield impact for five GCMs for 4 
2040-2069 (RCP8.5) at the 60 global locations (locations 1 to 30 are irrigated or high rainfall; locations 31 to 60 are 5 
rainfed/low input; see Table S5 for details of the locations). Data are ensemble median for 32 crop models (18 for 6 
protein), and mean of 30 years using region-specific soils, cultivars and crop management. Locations are connected 7 
by line to improve readability of this figure.  8 
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Fig. S23. Simulated wheat grain and protein yield impacts with climate change under five global climate models 3 
(GCMs) with genetic adaptation. Relative (A) grain yield and (B) grain protein yield impact for five GCMs for 4 
2040-2069 (RCP8.5) at the 60 global locations (locations 1 to 30 are irrigated or high rainfall and locations 31 to 60 5 
are rainfed/low input; see Table S5 for details of the locations). Data are ensemble median for 32 crop models (18 6 
for protein), and mean of 30 years using region-specific soils, cultivars, and crop management. Locations are 7 
connected by line to improve readability of this figure.  8 
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Fig. S24. Simulated effect of genetic adaptation for wheat grain and protein yield under baseline and climate change 3 
scenario for 2050s. Relative change in (A) grain yield and (B) grain protein yield for the baseline (1981-2010) and 4 
future climate scenarios for 2040-2069 (RCP8.5, five GCMs) at the 60 global locations (locations 1to 30 are 5 
irrigated or high rainfall and locations 31 to 60 are rainfed/low input; see Table S5 for details of the locations). Data 6 
are ensemble median for 32 crop models (18 for protein) and mean of 30 years using region-specific soils, cultivars, 7 
and crop management. Locations are connected by line to improve readability of this figure. 8 

  9 
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 3 

Fig. S25. Simulated global impacts of climate change scenarios on wheat production and protein. Relative impact on 4 
(A) grain production and (B) grain protein production, and (C) absolute impact on grain protein concentration for a 5 
2°C (360+2oC) or 4°C (360+4oC) temperature increase for the baseline period with historical atmospheric CO2 6 
concentration (360 ppm) and for a 2°C (550+2oC) or 4°C (550+4oC) temperature increase for the baseline period 7 
with elevated CO2 (550 ppm), and climate scenarios for 2040-2069 (RCP8.5, 5 GCMs) without (Climate change) 8 
and with (Climate change+Trait) genetic adapation, and for the baseline period with genetic adaptation 9 
(Baseline+Trait). Impacts were weighted by production area. Data are ensemble median of 32 crop models (18 for 10 
protein) for 360+2oC, 360+4oC, 550+Baseline, 550+2oC, 550+4oC and Baseline+Trait, and ensemble median across 11 
32 crop models and five GCMs for Climate change and Climate change+Trait, and mean of 30 years using region-12 
specific soils, cultivars, and crop management. Error bars for 360+2oC, 360+4oC, 550+Baseline, 550+2oC, 550+4oC, 13 
and Baseline+Trait are the 25th and 75th percentiles across 32 crop models (18 for grain protein), and for Climate 14 
change and Climate change+Trait the 25th and 75th percentiles across 32 crop models and five GCMs together.  15 
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