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Uncertainty in simulating wheat yields under

climate change

S.Asseng et al.’

Projections of climate change impacts on crop yields are
inherently uncertain'. Uncertainty is often quantified when
projecting future greenhouse gas emissions and their influence
on climate?. However, multi-model uncertainty analysis of crop
responses to climate change is rare because systematic and
objective comparisons among process-based crop simulation
models™® are difficult. Here we present the largest stan-
dardized model intercomparison for climate change impacts
so far. We found that individual crop models are able to
simulate measured wheat grain yields accurately under a
range of environments, particularly if the input information
is sufficient. However, simulated climate change impacts vary
across models owing to differences in model structures and
parameter values. A greater proportion of the uncertainty
in climate change impact projections was due to variations
among crop models than to variations among downscaled
general circulation models. Uncertainties in simulated impacts
increased with CO, concentrations and associated warming.
These impact uncertainties can be reduced by improving
temperature and CO; relationships in models and better quan-
tified through use of multi-model ensembles. Less uncertainty
in describing how climate change may affect agricultural
productivity will aid adaptation strategy development and
policymaking.

Uncertainties in projections of climate change impacts on
future crop yields derive from different sources in modelling.
The trajectories of future greenhouse gas emissions cannot be
projected easily as they are strongly influenced by political and
socio-economic development. A range of plausible projections
(scenarios) of emissions are used instead’. Projecting the effects
of emissions on climate and the downscaling of climate data
themselves, are both inherently uncertain, because different general
circulation model ensembles’ and downscaling methods® give
different results. Finally, uncertainty in simulating the response
of crops to altered climate can be attributed to differences in the
structures of crop models and how model parameters are set.
Process-based crop models account for many of the interactions
among climate, crop, soil and management effects and are the
most common tools for assessing climate change impacts on
crop productivity. Many crop model impact assessments have
been carried out for specific locations’, agricultural regions® and
the globe’. Statistical methods have also been used to analyse
trends in yields driven by climate'’, but interactions between
climate and non-climate factors confound results''. This hinders
the attribution of causality’* and development of appropriate
adaptation strategies.

Uncertainty, any departure from the unachievable ideal of
completely deterministic knowledge of a system'?, has been

addressed by the climate science community through probabilistic
projections based on multiple general circulation models (GCMs)
or regional climate model ensembles'. However, most climate
change agricultural impact assessments have used a single crop
model’, limiting the quantification of uncertainty™. As crop models
differ in the way they simulate dynamic processes, set parameters
and use input variables®, large differences in simulation results have
been reported'®. Although uncertainty of crop model projections
is sometimes assessed by using more than one crop model'® or by
perturbing crop model parameters'’, coordinating comprehensive
assessments has proved difficult’.

To estimate the uncertainty associated with studies of climate
impacts on crop vields, we used 27 different wheat crop models
(Supplementary Tables S1 and S2) at four sites representing very
different production environments (Fig. 1a). Simulated grain yields
varied widely, although median values were close to observed
grain yields across single-year experiments for four representative
environments (Supplementary Table S3) in the Netherlands,
Argentina, India and Australia (Fig.1a, b). This phenomenon was
previously reported in another multi-model comparison with fewer
models'®, and is comparable to the improved seasonal climate
simulations produced with multiple GCMs (ref. 18). The range
of simulated yields was reduced significantly after full calibration,
such that >50% of yields from calibrated models were within
the mean coefficient of variation (CV%) (4£13.5%) of >300
wheat field experiments' (Fig. 1c). Similar patterns were found
for other simulated aspects of wheat growth (Fig. 1d). Hence,
crop models are able to simulate measured grain yield and other
crop components accurately under diverse environments if input
information is sufficient.

To illustrate the possible changes in uncertainty of simulated
impacts, we analysed the sensitivity of models to a combination
of changes in precipitation and increases in both temperature
and atmospheric CO, concentration (734 ppm, compared with
baseline at 360 ppm) based on a location-specific scenario that
best approximated the ensemble of high-emission late-century
climate projections (Supplementary Table §3). Simulated climate
change yield responses of all partially calibrated crop models had
CV values between 20 and 30% (Fig. 2a); these were reduced
by 2-7% when models were fully calibrated. However, the CV
of simulated impacts using the 50% best-performing calibrated
models (based on root mean square errors (r.m.s.e) across all
locations) was about 2% higher than using all models, and this
decreased only when the 50% of models closest to observed yields
at each location were used (Fig. 2a). Uncertainty in simulated
climate change impacts differed across the environments (Fig. 2a).
In addition, uncertainty in simulated impacts varied with soil
(Fig. 2b) and crop management (Fig. 2¢,d). Hence, the overall
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Figure 1| Wheat model-observation comparisons. a, Global map of wheat production3® showing experimental sites (stars) representative of CIMMYT
mega-environments (ME, broadly indicated by ovals, http://wheatatlas.cimmyt.org). b, Observed (cross mark) and simulated (box plots) grain yields from
single-year experiments for the Netherlands (NL), Argentina (AR), India (IN) and Australia (AU). Simulated yields are from 27 different wheat crop
maodels. Partially calibrated simulated yields (larger boxes)—researchers had no access to observed grain yields and growth dynamics (blind test).
Calibrated simulated yields (smaller boxes)—researchers had access to observed grain yields and growth dynamics. In each box plot, vertical lines
represent, from left to right, the 10th percentile, 25th percentile, median, 75th percentile and 90th percentile of simulations. Standard deviation for
observed yields (based on measurements of four replicates) is shown as an error bar if known. €, Number of models within mean field experimental
variation (13.5%; ref. 19) for partially calibrated (open bars) and fully calibrated models (grey bars) for single locations (NL, AR, IN and AU for each
country) and combinations of locations. d, Relative rm.s.e. of simulation-observation comparisons for partially calibrated (open bar) and fully calibrated

maodels (grey bars) of grain yield components across all four locations. LA, leaf area index; ET, evapotranspiration.
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Figure 2 | Variability in impact model uncertainty. a, CV% for simulated
yield response to a location-specific scenario representing GCM
projections for the high-emission (A2) scenario for the late century (in
relation to baseline 1981-2010, Supplementary Table S3) with 27 crop
models. Models were partially calibrated (black) or fully calibrated (green).
In addition, 50% of models with the closest simulations to the observed
yields across all locations (blue) and 50% of models with the closest
simulations to the observed yields per location are shown (red). b-d, CV%
of simulated yield response to the climate change scenario with 27 fully
calibrated crop models with increased (solid red) and reduced (dashed red)
soil water holding capacity (b), early (solid red) and delayed (dashed red)
sowing dates (€) and increased (solid red) and reduced (dashed red) N
fertilizer applications (d; only 20 models included N dynamics); fully
calibrated 20 models that included N dynamics (dashed green). The

fully calibrated simulation (green) fromais reproduced in b-d for
comparison. The Netherlands (NL), Argentina (AR), India (IN) and
Australia (AU).

growing environment, in particular the soil and crop management,
affects the range of simulated grain yields across models, thus
adding to uncertainty in responses coming from individual models.
Therefore, selecting a subset of models that perform best in
present environments does not reduce uncertainty in simulated
climate change impacts.

Changes in atmospheric CO,, temperature and precipitation
are key drivers of the responses of crops to climate change®.
Simulated impacts of elevated CO, on yields varied relatively little
across models (50% of model results were within £20% of the
median response; Fig. 3a—d and Supplementary Fig. S5), but the
variation across 80% of the crop models increased under elevated
CO; concentration mostly in the low-yielding environment of
Australia (see box-plot whiskers in Fig. 3d). The uncertainty in
simulated yields did not increase with increasing CO, in the
other environments. This is not surprising as elevated CO, affects
fewer processes than increased temperature and because several
of the wheat models have used observations from free-air CO,
enrichment experiments to improve model processes related to
high CO, (refs 21,22). However, none of the models has been
tested with elevated CO, in combination with high temperature.

Most simulated yield responses to a 180 ppm CO, increase at
present temperatures (Fig. 3a—d) were within the range of measured
responses, ranging from 8% to 26% with elevated atmospheric
CO, concentrations (Fig. 3e) across experiments conducted in
the USA, Germany and China®™** (Supplementary Information,
page 11 last paragraph).

In contrast to the mean response of yields to CO,, uncertainty
in simulated yield showed a strong dependency on temperature,
particularly when the temperature increase exceeded 3°C with
associated changes in atmospheric CO,. The median model
response to a 3°C increase in temperature (Fig.3a—d and
Supplementary Fig. S5) is consistent with general field observations
(Fig. 3e); observed wheat grain yields declined by 3-10%°C™!
increase in mean temperature'™* (Supplementary Information,
page 11 last paragraph). The increased range of impacts at
high temperatures (50% of models were between 20 and 40%
of the median response on either side) indicated an increased
model uncertainty with increasing temperature. This is partly
related to simulated phenology (Supplementary Fig. S3). For
example, phenology is often enhanced with increasing temperature
resulting in less time for light interception and photosynthesis
and consequently less biomass and vyield. In addition, the
increased model uncertainty is also partly due to an increased
frequency of high-temperature events and its simulated impact
on crop growth™ (Supplementary Fig. 54), and high-temperature
interactions with elevated CO, (Fig. 3). However, accounting
for a process such as high-temperature stress impact in a
model does not necessarily result in correctly simulating that
effect (Supplementary Fig. S4), as the modelled process itself,
for example, leaf area or biomass growth, interacts with other
model processes in determining the final yield response of a
model. Precipitation affected simulated yields, but precipitation
change had little impact on the range of simulated responses
(Supplementary Fig. 52).

If averaging multi-model simulations is superior to a single crop*
or climate’® model simulation because the ratio of signal (mean
change) to noise (variation) increases with the number of models
and errors tend to cancel each other out, we should be able, with
caution”, to estimate how many models would be required for
robust projections. We assessed this by randomly choosing 260
subsets of the crop models, and computing the mean and spread
of simulated results (Supplementary Fig. S1). As the variation in
yields was about 13.5% around the mean in field experiments'?,
we considered projections to be robust if the range of projections
was within 13.5% of the mean. The number of models required
for robust assessments of climate change varied depending on
the magnitude of temperature change and interactions with the
change in atmospheric CO, (Fig. 4a). For example, at least five
models are needed for robust assessments of yield impacts for
increases of up to 3°C and 540 ppm of CO,. Fewer models are
needed for smaller changes and more models for greater changes
in temperature (Fig. 4a).

When simulating impacts assuming a mid-century A2 emissions
scenario (556 ppm of CO,) for climate projections from 16
downscaled GCMs using 26 wheat models, a greater proportion
of the uncertainty in yields was due to variations among
crop models than to variations among the downscaled GCMs
(Fig. 4b). In contrast, GCM uncertainty tends to dominate in
perturbed single crop model parameter studies®®. The variation
of simulated yields for the scenario ensemble was greater for
low-yielding environments and absolute values were similar to
observations across yvield levels and within the range of field
experimental variation'®. Smaller projected climate changes, for
example, for low emissions or early-century time frames, result in
less variation in simulated impacts; larger climate changes result in
more variation (Fig. 3).
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Figure 3 | Sensitivity of simulated and observed wheat to temperature and CO; change. a-d, Simulated relative mean (30-year average, 1981-2010) grain
yield change for increased temperatures (no change, grey; +3 °C, red; +6 °C, yellow) and elevated atmospheric CO» concentrations for the Netherlands
(NL; a), Argentina (AR; b), India (IN; €) and Australia (AU; d). For each box plot, vertical lines represent, from left to right, the 10th percentile, 25th
percentile, median, 75th percentile and 90th percentile of simulations based on multi-models. e, Observed range of yield impacts with elevated CO>

(refs 23,24). Observed range of yield impacts with increased temperature’®2# (extrapolated, based on separate experiments with 40-345 ppm elevated

CO; and 1.4-4.0°C temperature increase, Supplementary Information).

We conclude that projections from individual crop models
fail to represent the significant uncertainties known to exist in
crop responses to climate change. On the other hand, model
ensembles have the potential to quantify the significant, and
hitherto uncharacterized, crop component of uncertainty. Crop
models need to be improved to more accurately reflect how
heat stress and high-temperature-by-CO, interactions affect plant
growth and yield formation.

a

Methods

Twenty-seven wheat crop simulation models (Supplementary Tables S1 and 52)
were tested within the Agricultural Model Intercomparison and Improvement
Project™ (www.agmip.org), with data from quality-assessed field experiments
(sentinel site data) from four contrasting environments using standardized
protocols, including partial and full model calibration experiments, to assess the
role of crop model-based uncertainties in projections of climate change impacts
(Fig. 1a and Supplementary Information). Model simulations were executed by
individual modelling groups.
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Figure 4 | Size of model ensembles and impact model uncertainty.

a, Average number of crop models across locations required to

reduce the simulated yield impact variation to within the mean field
experimental CV% of 13.5% (ref. 19). Different colours indicate elevated
atmospheric CO» concentrations (black, 360 ppm; red, 450 ppm; blue,
540 ppm; green, 630 ppm; dark yellow, 720 ppm) in combinations with
temperature changes. Error bars show s.d. b, CV due to crop model
uncertainty Cusing 10th percentile to 90th percentile of simulations based
on 26 crop models) in simulated 30-year average climate change yield
impact (black) and due to variation in 16 downscaled GCM (red,
Supplementary Tables S6 and S7) mid-century A2 emission scenarios
(2040-2069). Numbers indicate present yields at each location

(Supplementary Table S3).
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S. Asseng, F. Ewert, C. Rosenzweig, J.W. Jones, J.L. Hatfield, A. Ruane, K.J. Boote, P. Thorburn, R.P. Rotter, D.
Cammarano, N. Brisson, B. Basso, P. Martre, P.K. Aggarwal, C. Angulo, P. Bertuzzi, C. Biernath, A.J. Challinor, J. Doltra,
S. Gayler, R. Goldberg, R. Grant, L. Heng, J. Hooker, L.A. Hunt, J. Ingwersen, R.C. Izaurralde, K.C. Kersebaum, C. Miiller,
S. Naresh Kumar, C. Nendel, G. O’Leary, J.E. Olesen, T. M. Osborne, T. Palosuo, E. Priesack, D. Ripoche, M.A. Semenoyv,
I. Shcherbak, P. Steduto, C. Stockle, P. Stratonovitch, T. Streck, I. Supit, F. Tao, M. Travasso, K. Waha, D. Wallach, J.W.
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Supplementary Information
Supplementary Materials and methods
Partially and fully calibrated simulation experiments (Fig. 1 and 2) with observed field experimental data

Twenty-seven different wheat crop simulation models were used by individual modeling groups (in most
cases by the model developers) (Supplementary Table S1) for a model intercomparison. The models varied in
complexity and functionality (Supplementary Table S2). Six models did not simulate nitrogen (N) dynamics
(Supplementary Table S2). Simulations were carried out for single treatments of experiments at four
contrasting locations, which were The Netherlands (Wageningen'), Argentina (Balcarce?), India (New
Delhi’), and Australia (Wongan Hills*) (Supplementary Table S3) representing a very wide range of growing
conditions of wheat. Crop management treatments were chosen to be representative for each region

(Supplementary Table S3).

Supplementary Table S1. Crop models (27) used in AgMIP Wheat study.

odel (version) Reference Documentation

46

'SIM-Nwheat (V.1.55) http://www.apsim.info

SIM (V.7.3) http://www.apsim.info/Wiki/

uaCrop {V.3.1+) http://www.fao.org/nr/water/aquacrop.html

opSyst (V.3.04.08) http://www.bsyse.wsu.edu/CS_Suite/CropSyst/index.html

9,10 11

SAT- CERES {v.4.0.1.0) ) http://www.icasa.net/dssat/

10, 12

SAT-CROPSIM (v4.5.1.013) http://www.icasa.net/dssat/
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Ecosys

EPIC wheat (V1102)

Expert-N (V3.0.10) - CERES (V2.0)
Expert-N (V3.0.10) — GECROS (V1.0)
Expert-N (V3.0.10) — SPASS (2.0)
Expert-N (V3.0.10) - SUCROS (V2)
FASSET (V.2.0)

GLAM-wheat (V.2)

HERMES (V.4.26)
InfoCrop (V.1)
LINTUL-4 (V.1)
LINTUL-FAST (V.1)
LPImL (V3.2)
MCWLA-Wheat (V.2.0)
MONICA (V.1.0)
O'Leary-model (V.7)
SALUS (V.1.0)

Sirius (V2010)
SiriusQuality (V.2.0)
STICS (V.1.1)

WOFOST (V.7.1)

13

14-16

17-20

19, 20

17,19-22

17,19, 20, 23

24,25

26,27

28,29

30

31,32

33

34-39

40-42 43

45-48

49, 50

51-54

55-57

58, 59

60

https://portal.ales.ualberta.ca/ecosys/
http://epicapex.brc.tamus.edu/
http://www.helmholtz-muenchen.de/en/iboe/expertn/
http://www.helmholtz-muenchen.de/en/iboe/expertn/
http://www.helmholtz-muenchen.de/en/iboe/expertn/
http://www.helmholtz-muenchen.de/en/iboe/expertn/
http://www.fasset.dk

http://see-web-
01.leeds.ac.uk/research/icas/climate_change/glam/download_glam.html

http://www.zalf.de/en/forschung/institute/Isa/forschung/oekomod/hermes
http://www.iari.res.in
http://models.pps.wur.nl/models

Request from frank.ewert@uni-bonn.de
http://www.pik-potsdam.de/research/projects/Ipjweb
Request from taofl@igsnrr.ac.cn
http://monica.agrosystem-models.com

Request from gjoleary@yahoo.com
http://www.salusmodel.net
http://www.rothamsted.ac.uk/mas-models/sirius.php
Request from pierre.martre@clermont.inra.fr
http://www.avignon.inra.fr/agroclim_stics_eng/

http://www.wofost.wur.nl
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Supplementary Table S3. Field experiments, crop management and climate characteristics for baseline and a late

century, high emission scenario (A2) used in partially calibrated and calibrated simulation experiments.

Experiment

A B’ c D¢
Location Wageningen Balcarce New Delhi Wongan Hills
Country The Netherlands Argentina India Australia
Latitude 51.97 -37.5 28.38 -30.89
Longitude 5.63 -58.3 77.12 116.72

high-yielding high/medium-yielding irrigated short- low-yielding rain-fed
Environment

long-season medium-season season short-season

Average growing season
Sails

Soil type

Maximum Root depth (cm)
pawC' (mm to maximum
rooting depth)

Crop management
Cultivar

Sowing date (DOYt}

Total applied N fertilizer (kg
N/ha)

Total irrigation (mm)
Phenology

Anthesis (DOY)

Maturity (DOY)
Experimental year

Mean growing season
temperature

Mean growing season
precipitation

Baseline

Mean growing season
temperature

Mean growing season
precipitation

Climate change scenario
GCM scenario examined

Mean growing season

November-July

Silty clay loam
200

354

Arminda

294

160

o

178
213
1982/83

8.8°C

595 mm

716 mm

ukmo_hadcm3

11.4°C

© 2013 Macmillan Publishers Limited. All rights reserved.

June-December

Clay loam

130

205

Oasis

223

120

328
363
1992

13.7 °C

336 mm

12.0°C

395 mm

ncar_ccsm3.0

14.2°C

November-April

Sandy loam

160

121

HD 2009
328

120

383

49

93
1984/85

17.3°C

383 mm’

18.9°C

467 mm*

mpi_echam5

236°C

May-December

Loamy sand
210

125
Gamenya
164

50

0

275

321

1984

14.0 °C

164 mm
16.2 °C

246 mm
csiro_mk3.0
18.7 °C



temperature

Mean growing season
690 mm 432 mm 583 mm* 164 mm
precipitation

"Plant Available Water Content (PAWC, mm)
*Day of Year (DOY)
" Includes 383 mm of irrigation each year

“"A2 emission scenario from UKMO HadCM3 simulations, with 734 ppm CO; at 2085 was assumed in the climate

model and the crop model simulations.

; i
* Source:

® Source:
® Source: *

d 4
Source:

Sensitivity analysis with 30-years of climate data

In addition to simulations of the single-year experiments, simulations were carried out with long-
term measured daily climate data (solar radiation, maximum and minimum temperature,
precipitation, surface wind, dew point temperature, relative humidity, and vapor pressure) using
measured soil characteristics, measured initial soil water and soil N contents, crop management,
measured anthesis and maturity dates from the single-year-experiments. For the baseline, daily
climate data for the period 1980-2010 were used for all locations (31 years of climate data are
required to simulate 30 years of yields in The Netherlands and India). For the location in India,
solar radiation was obtained from the NASA/POWER dataset that extends back to 1983
(http://power.larc.nasa.gov). Missing data for 1980 to 1983 were filled in using the Weatherman
tool included in DSSAT 4.5°'. In addition, 2-meter wind speed (m/s), dew point temperature
(°C), vapor pressure (hPa), and relative humidity (%) were estimated for each location from the
NASA Modern Era Retrospective-Analysis for Research and Applications (MERRA®?). For the

location in The Netherlands, measured wind speed and vapor pressure were available.

Each of the 27 wheat models was used to simulate the field experiments in two separate steps, 1)
with limited in-season information from the experiments being made available to the modelers
(partial calibration or ‘blind” simulations), and 2) all available information being made available
to the modelers (full calibration). Simulations with partially calibrated models were included to

allow a more objective model assessment®. For the partial calibration or ‘blind model test’,

© 2013 Macmillan Publishers Limited. All rights reserved.



modelers had no access to measurements of grain yield, biomass, and crop water and N
dynamics, receiving information only on soil characteristics, initial soil-water conditions, daily
weather data, crop management, and flowering and maturity dates. For full calibration, modelers
had access to all available measurements, including within-season and final biomass, water and

N uptake, soil water and soil N, grain yield and yield components.

Note, some of these data may have been used, as part of a larger data set (NL and AU), for past
calibration of some of the models. Furthermore, the organization of the project was such that one
modeling group had access at all times to detailed data from all four sites, one group had access
to NL and AU and one group had access to NL and did know the measurements beforehand.

However, they did not change the model or parameters for the blind test as a consequence.

The annual simulation outputs included: grain yield (t ha™); above-ground biomass at anthesis
(kg ha™); above-ground biomass at maturity (kg ha™); maximum leaf area index (LAIL m” m™);
anthesis date (DOY); maturity date (DOY); cumulative N leached (kg N ha™); cumulative water
loss (mm); total above-ground N at anthesis (kg N ha™); total above-ground N at maturity (kg N
ha); grain N (kg N ha™"); grains per square meter (# m™); cumulative ET (mm); cumulative N
mineralization (kg N ha™); cumulative N volatilization (kg N ha™); cumulative N immobilization
(kg N ha); cumulative N denitrification (kg N ha™); plant available soil water to maximum

rooting depth (mm); soil mineral N to maximum rooting depth (kg N ha™).

Data analysis (Fig. 1, 2 and 3a-d)

The root mean square error (RMSE) between observed and simulated yield is calculated as:

RMSE = JiZ,-:i(y.- -3’ (M

where y; are the measurements, ¥;the simulations, and » is the number of comparisons.

For the analysis in Fig. l¢c, +/- 13.5% was used as the measurement uncertainty. That is the mean
coefficient of variation (CV) for more than 300 wheat field experiments reported in Taylor et al.

% For Fig. 2a-d, we define model response to changed climate as:

© 2013 Macmillan Publishers Limited. All rights reserved.



Xk = Yfuturex — YVbasslinek (2)

where x, is predicted yield change according to model k, ¥¢,,,,,.. ;. 18 yield averaged over the 30
years of future climate according to model k and ¥ zse1ine 1 15 yield averaged over the 30 years of

baseline climate according to model k. The coefficient of variation (CV%) of x represents the

variation between models, calculated as:

CV% = Z*100 (3)
x

where ¢ is the standard deviation of the yield changes (x) values and X is their average.

Coefficients of variation were calculated separately for the partially calibrated models, the fully
calibrated models, the 50% of fully calibrated models that have the smallest RMSE averaged
over all locations and finally for each location the 50% of fully calibrated models (14 of 27) with
the smallest RMSE for each particular location.

The relative grain yield change in Fig. 3a-d was calculated as:

— Fruture.x— Ypaseline .k «100 (4)

T'k —
Ybaseline ik

The box and whisker plots show the distribution of responses from the wheat models. The
vertical line in each box represents the median response, the box delimits the 25™ to 75"

percentiles, and the whiskers extend from the 10™ to the 90™ percentile.

© 2013 Macmillan Publishers Limited. All rights reserved.



Variation in model predictions of the effect of climate change in relation to calibration, soil and

crop management (Fig. 2)

For Fig. 2, the 30-year base line climate assumes a CO, concentration of 360 ppm CO» (mean of
1995). The 30-year climate change scenario, an A2 emission scenario for 2070-2099 with 734
ppm CO2 at 2085, was drawn from the single GCM that best represented the seasonal
temperature and precipitation changes from the wider ensemble of GCMs at the given location
(Supplementary Table S3). This emission scenario (A2) and future time period (2070-2099) was
selected as one with extreme expected changes in temperature and precipitation over the next
100 years for a sensitivity analysis. This ensured that the largest projected changes in climate are
included in the model sensitivity analysis. The same local soil and crop management (except N
and irrigation) was used for the baseline and sensitivity scenario. The crop management
represents current practice at the selected locations, representative for the region of the location.
Simulations were reset each year to the measured soil water and soil N contents from the field
experiments before sowing to avoid carry-over effects. Dates for in-season crop management, N
fertilizer (The Netherlands, India) and irrigation (India), were adjusted for phenology changes
due to temperature changes in the sensitivity scenarios. An average application date was applied
to each of the 30 years for each of the baseline, and sensitivity scenarios according to the mean

temperature changes.

To analyze the impact of different soils, soil properties were manipulated by creating a +/-
20%" °° water-holding capacity at each location by changing the drained upper limit in each soil
layer accordingly. To analyze the impact of different N-fertilizer management, N-fertilizer
applications were varied by adjusting the N applications by +/-50% relative to the local crop
management practice. To analyze the impact of sowing dates, the sowing dates were shifted 20

days earlier and 20 days later than the locally practiced sowing date.

Variation in model predictions (Fig. 3a-d)

The sensitivity analysis of Fig. 3 was carried out with 26 of the 27 wheat models (one modeling
group was not able to carry out the sensitivity analysis), using the fully calibrated models. The

relative yield changes are calculated as in eq. (4). The future weather scenarios use the baseline

9
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weather with temperature changes of -3°, 0°C, +3°C, +6°C or +9°C and CO, concentrations in
90 ppm increments from 360 ppm to 720 ppm (see Supplementary Table S4). Temperature
changes were added to daily minimum and maximum temperature as used in the models. In
addition to the scenarios presented in Fig. 2, scenarios with changes in N fertilization
(Supplementary Table S4) and some specific combinations of changes in future climate and crop

management (Supplementary Table S5) were tested.

Supplementary Table S4. Variable combinations altered in the sensitivity experiment’. All temperature by CO,

combinations were simulated. +/-N was applied to all CO, changes, but not in combination with temperature.

Variable Change

Baseline weather with

Temperaturei -3°C 0° C +3°C +6°C +9°C

Baseline weather with

CO; concentration 360 ppm 450 ppm 540 ppm 630 ppm 720 ppm

Baseline weather with

*

N 100% 50% 150%

" Carried out with 26 crop models (one modeling group was not able to participate in this analysis) for the four
locations with 30 years. Changes were applied to 30-year baseline weather data (1981-2010).

JBNcm:', T nax and Ty, were changed simultaneously for each day and all the temperatures are offsets from baseline
temperature.

* Six crop models do not simulate N dynamics.

10
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Supplementary Table S5. Climate-by-crop-management experiments’ .

Description

Baseline (360 ppm) + 7 days of T,,,,=35 °C start at measured anthesis date™
Baseline (360 ppm) - 20 days in sowing date

Baseline (360 ppm) + 20 days in sowing date

Baseline (360 ppm) - 20% PAW? of soil

Baseline (360 ppm) + 20% PAW? of soil

A2-End-of-Century scenario** 734 ppm - 20 days in sowing date

A2- End-of-Century scenario®** 734 ppm + 20 days in sowing date

A2- End-of-Century scenario™* 734 ppm  50% N fertilizer’

A2- End-of-Century scenario** 734 ppm 150% N fertilizer”

A2- End-of-Century scenario®* 734 ppm - 20% PAW of soil

A2- End-of-Century scenario®* 734 ppm + 20% PAW of soil

'Carried out with 26 crop models (one modeling group was not able to participate in this analysis) for the four
locations with 30 years. Changes were applied to 30-year baseline weather data (1981-2010).

*Baseline temperatures were modified by including a maximum temperature of 35°C for 7 days starting at measured
anthesis date for each location. If baseline temperatures exceeded 35°C, values were not adjusted.

'PAW - Plant available water holding capacity of a soil. PAW was reduced or increased by 20% by changing the
drain upper limit of the soil.

*Six models do not include N dynamics.

**Modified baseline climate series for each location according to GCM scenario listed in Table S3 to represent A2

End-of-Century (2070-2099) scenarios; 734 ppm CO; represents 2085 concentration from A2 scenario.

Observed impact of elevated CO; and temperature (Fig. 3e)

Fig. 3e in the main paper is based on the following data: Several FACE experiments in the USA,

Germany and China have reported an 8 to 26 % grain yield increase with elevated atmospheric

67-72

CO; concentrations of 550 ppm compared with 360 ppm”""*. Similarly, an average 3 to 10%

wheat grain yield decline per 1°C increase in mean temperature has been reported across several

67,73

experiments’ "~ -, though there is some evidence that the impact of temperature change on grain

yield might be non-linear’®. Acknowledging this, but for simplicity here, the reported impacts

11
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were linearly extrapolated in Fig. 3e to +3°C to allow for a general comparison with the

simulation results in Fig. 3a-d.

Calculation of required number of models to reduce uncertainty (Fig. 4a)

Figure 4a is based on a sensitivity analysis with five temperature levels and five CO,
concentrations at 100% N (Supplementary Table S4). We evaluated how variable the results
would be if the number of models varied from m=1 to m=26 (one of the 27 models was not used
in the sensitivity analysis). For each value of m, and for each site, we drew at random 260
combinations of model results (10 times the number of models, each representing a model) and
calculated CV%. A typical result is shown in Supplementary Figure S1 for one of the locations,
India. Such analysis was carried out for each location. The smallest m such that CV% < 13.5%
(which is the experimental variation reported by Taylor et al.*) is the number of models

reported. The average value of m across the four study locations is presented in Fig. 4a.

India: +3°C & 450ppm

_\._LM
o o u»1 O

Coefficient of variation (%)

(@]

2 4 6 8 10 12 14 16 18 20 22 24 26
Number of models (#)

o

Supplementary Figure | S1. [llustration of calculated coefficient of variation (CV%) of simulated yield responses
to a combination of temperature and CO, changes (+3 °C and 450 ppm) as a function of the number of average
model responses randomly selected 260 times from the model results (calibrated models) for India. Vertical green

line indicates number of models chosen in this case, i.e. the smallest number of models below the 13.5 CV% after

Taylor et al®
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Comparing uncertainties of crop and General Circulation Models (Fig. 4b)

A scenario representing a A2 emission scenario for the 2040-2069 period (also referred to as
2050s, Mid- Century, 556 ppm of CO;) from the ensemble of 16 General Circulation Models
(GCM) (Supplementary Table S6) was used by 26 wheat models (one modeling group was not
able to carry out this analysis). 30-year mean climatologies from each GCM were calculated for
each month and the Mid-Century grid boxes corresponding to the four experimental locations
were compared to the same grid box in the baseline period (1980-2009). The resulting monthly
changes (aggregated to growing season means in Supplementary Table S7, but applied here on a
monthly basis) were then imposed on the observed 30-year daily baseline climate series

baselines following the so-called “delta change approach™”.

Each crop model simulated each of the 16 GCM scenarios. The 30-year mean absolute impacts
of the scenarios were calculated (30-year scenario mean minus 30-year baseline mean). Standard
deviations were calculated for the absolute yield impacts separately across crop models and
across the GCM’s by using the model results from the 10" percentile to the 90 percentile of
simulations based on multi-models (i.e. considering the 0-10"™ and 90-100" percentiles as
outliers, consistent with the whisker plots used here). Standard deviations were used to calculate
the coefficients of variation (CV%, equation 3) by using the observed grain yields from each
location (supplied in Figure 4b) as basis for the calculation of CV to be directly comparable with

observed data shown in Figure 1.

Supplementary Table S6: Sixteen General Circulation Models (GCM) models from CMIP3 General

Circulation Models analyzed'® used for climate changes scenarios.

GCM GCM GCM source

scenario

A beer_bem2.0 Bjerknes Centre for Climate Research, Norway

B ccema_cgem3.1(T63) Canadian Centre for Climate Modeling and Analysis, Canada
CERFACS, Center National Weather Research , METEO-FRANCE,

C cnrm_cm3

France
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csiro_mk3.0
gfdl_em2.0
gfdl_em?2.1
giss modelE r
Inmem3.0

ipsl_cm4

miroc3.2 (medium resolution)

miub_echo g
mpi_echam5
mri_cgem?2.3.2a
ncar_ccsm3.0
ncar_peml

ukmo_hadem3

CSIRO Atmospheric Research, Australia
Geophysical Fluid Dynamics Laboratory, USA
Geophysical Fluid Dynamics Laboratory, USA
NASA Goddard Institute for Space Studies, USA
Institute for Numerical Mathematics, Russia
Institute Pierre Simon Laplace, France

Center for Climate System Research; National Institute for
Environmental Studies; Frontier Research Center for Global Change,
Japan

Meteorological Institute of the University of Bonn, Germany
Max Planck Institute for Meteorology, Germany
Meteorological Research Institute, Japan

National Center for Atmospheric Research, USA

National Center for Atmospheric Research, USA

Hadley Centre for Climate Prediction, Met Office, UK

Supplementary Table S7: Projected change in mean growing-season temperature and percentage change in mean

growing-season precipitation at each location for A2-2040-2069 (Mid- Century) scenarios from 16 GCMs.

Wongan
Location Wageningen Balcarce New Delhi
Hills
The
Country Argentina  India Australia
Netherlands
GCM
scenario  Change in mean growing season' temperature (°C)
A 1.56 1.26 1.58 1.24
B 1.39 1.01 2.63 1.85
C 1.67 1.29 2.12 1.56
D 1.33 1.01 1.62 1.51
E 1.52 1.27 3.00 1.55
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F 1.12 1.01 222 1.50
G 1.84 0.84 2.13 1.88
H 1.44 1.37 295 1.34
I 2.14 1.33 242 1.84
I 1.96 1.33 2.17 1.51
K 1.20 1.13 1.73 1.53
L 1.46 0.77 2.20 1.54
M 1.28 1.19 1.65 1.30
N 1.96 1.33 222 2.23
0] 1.06 1.00 1.53 1.03
P 1.22 1.60 2.42 1.84
GCM

scenario  Change in mean growing season' precipitation (%)

A 8.7 10.4 -18.7 -14.1
B 6.3 0.4 9.1 =233
C 23 1.7 -31.3 -21.5
D 16.8 124 6.5 -24.5
E 1.8 -8.3 -40.1 -29.2
F 2.2 -1.2 46.2 -24.2
G -1.1 2.1 -2.3 -15.5
H 12.2 0.9 10.4 -19.1
I -7.8 -14.3 -0.2 214
I 2.5 2.4 -6.7 -8.8
K 6.5 5.1 27.7 -19.0
L -1.4 35 13.7 -22.8
M 4.4 -2.8 57.2 59
N 0.9 -4.9 12.0 -7.5
0O 4.6 -0.7 -12.2 -12.9
P -3.8 33 68.1 15.6

Current growing season length. See Supplementary Table S3 for location specific growing season periods.
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Supplementary Results
Precipitation impact

The simulated 30-year baseline yields were used to analyze the impact of growing-season
precipitation changes on simulated yields. After sorting years according to mean seasonal
temperature, yields from the mid-temperature tercile of the 30-year baselines for each location
(except India which received irrigation) were selected to minimize a temperature effect, and
compared with the yield from the year with the mean precipitation of this tercile. Years with
about +10 and +25% higher growing-season precipitation and years with -10 and -25% less
growing-season precipitation than the median of the mid-tercile were selected to calculate yield
impacts from precipitation differences (i.e. difference in yield from year with +10, +25% higher
precipitation, -10 and -25% less growing-season precipitation and the yield of the median
precipitation year of the mid-temperature tercile. Growing-season precipitation differences had
an impact on simulated yield but showed little impact on the variation in simulated yield change

due to precipitation changes (Supplementary Fig. S2).
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Supplementary Fig. S2. Simulated relative grain yield difference (change) for an increase (+10 and +25%) and a
decrease (-10, -25%) in growing-season precipitation for the rain-fed sites a) The Netherlands (NL), b) Argentina
(AR) and ¢) Australia (AU). For each box plot, vertical lines represent, from left to right, the 10" percentile, 25

percentile, median, 75" percentile and 90" percentile of simulations based on multi-models.
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High temperature impact

Increased temperatures had an impact on simulated anthesis and maturity dates (Supplementary

Fig. S3), which in turn affect simulated growth and grain yields.
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Supplementary Fig. S3. Simulated changes in anthesis and maturity dates with increased temperatures of +3°C
(red) and +6°C (yellow). For each box plot, vertical lines represent, from left to right, the 10" percentile, 25"

percentile, median, 75" percentile and 90" percentile of simulations based on multi-models.
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The scenario with seven consecutive days of Ty, of 35 °C at the mean anthesis date for each
location is one of the special simulation experiments (Supplementary Table S5). The impact of
this scenario is shown in Supplementary Fig. S4, indicating that some of the increased variation
with increasing temperature in Fig. 3 is due to the contribution of variation in modeling heat

stress impact on yields (Supplementary Fig. S4).

NL o |—o—om] oo% Dio
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Simulated relative heat impact (%)

Supplementary Fig. S4. Simulated yield change from seven days of introduced T, of 35 °C at the mean anthesis
date for each location. For each box plot, vertical lines represent, from left to right, the 10" percentile, 250
percentile, median, 75" percentile and 90" percentile of simulations based on multi-models. Symbols indicate

results from models which account for heat stress impact (see Supplementary Table S2, column 9)
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Temperature by CO, impact

a) The Netherlands TxCO, sensitivities b) Argentina TxCO,, sensitivities
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Supplementary Fig. S5: Response surfaces of crop model ensemble to temperature and atmospheric CO,
concentration sensitivity tests at a) the Netherlands, b) Argentina, ¢) India, and d) Australia. The filled
colours represent the median (across the 26 crop models) 30-year mean yield change (as a percentage of
the mean 30-year yield for the 1981-2010 baseline period) for each of the sensitivity experiments (dots) as
well as an emulated surface fit to these dots. The gray colours represent the standard deviation (across the
26 crop models) of the 30-year mean yield change (percentage of the 30-year mean baseline yield), with
the outlines of the dots representing the experiments and the contours representing an emulated surface fit

to these experimental standard deviations.

Response emulators for median yield change and the standard deviation of yield change (across

the 26 crop models) were fit assuming a quadratic form (Supplementary Fig. S5):
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E(T,[CO3]) = a+ bT + ¢T? + d[CO,] + [CO,]* + fT[CO,] + g (T[CO2])’

where E(T,CO;) is the emulated response at a given temperature change T and CO,

concentration ([CO,]) and parameters a-g are fit using a least-squares fit.

The results indicate that the general pattern of yield sensitivities and their uncertainties is
consistent from region to region, although the magnitude of the sensitivities varies from site to
site. Yields tend to be decreased at higher temperature and increased at higher CO,
concentration; however, at high temperatures the CO; benefits are reduced (Supplementary Fig.
S5). As the ensemble of crop models is tested with climates that are increasingly dissimilar from
the baseline period (e.g. very hot and with high CO,), uncertainty also increases. This effect is
strongest in Australia (where the baseline climate is hot and dry) and weakest in The Netherlands

(where the baseline climate is cool and wet).
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